[bookmark: _Toc294083234][bookmark: _Toc294083463][bookmark: _Toc294083921][bookmark: _Hlk37909161][bookmark: _Hlk43367565][bookmark: _Hlk94194372]Macros for Editors ____
(and Proofreaders)
by Paul Beverley
Version 24.04.24

Thank you!
I’m very much aware that any gift, talent or skill that I might have comes from God, and I’m very grateful to Him! And I’m very grateful, too, to my wife Sue for caring for me and being patient with me.
I also want to thank my professional colleagues in the UK’s Chartered Institute of Editing and Proofreading (www.ciep.uk) for inspiring me and encouraging me to create the enclosed macros. So, thanks to everyone for giving me such joy in life!

Thank me?
If you find this book helpful and would like to say thank you, please make a gift to a charity of your choice, in your own country, and preferably one that aims to alleviate human suffering in some way. Thanks!
[bookmark: _Toc55977110][bookmark: _Toc164352894]Contents
Contents
Macros can take a long time to run!
Mac users start here, please
Introduction ____
Who is Paul Beverley?
Quick start
Non-programmers start here
01 Introduction to macros ____
What is a macro?
The elements of a macro
Storing your macros
Adding macros
Installing a macro from scratch
02 Downloading and running macros ____
Downloading macros from the internet
Running the macros
“What keystrokes should I use?”
“But which keystrokes can I use?”
Allocating a keystroke (Word 2013 and 2010)
Allocating a keystroke (Word 2011/365 – Mac)
Allocating a keystroke (Word 2007)
Allocating a keystroke (Word 2002/3)
Adding icons (Word 2007/2010)
Adding icons (Word 2002/3)
Updating macros
What happens when things go wrong?
03 A conceptual approach to editing ____
04 Favourite tools of editors and proofreaders ____
05 Proofreading a book – a possible workflow ____
06 Book editing – a possible workflow ____
07 Tools for different aspects of editing ____
08 Macro Menu – complete macro tool list ____
09 Textual analysis ____
Run all your analyses at one go
DocAlyse
Like DocAlyse, but with user-selected targets
Counting numbers as figures or as text
Analyse serial (or not) commas
Analyse different formatting of centuries
Analyse format of days and months
Analyse different types of lists
Highlight possible errors with a/an
Reveal formatting and special characters
Count words that appear as both singular and plural
Examine formatting and applied effects and patterns
Spelling analysis
High-speed spellchecking
Check/correct current spelling
Count IS/IZ spellings
Count UK/US spellings
Highlight UK/US spelling errors
Spellchecking for proofreading and editing
High speed spellchecking
Spellchecking for proofreading
Spellchecking for dual languages
Checking for misspelt proper nouns
Checking for spelling variants of ‘special’ words
Frequency list of full names
Preferred spelling analysis
Checking the abbreviation of genus+species names
Finding similarly spelt words
Variations in capitalisation
Find and count repeated phrases
Spellings with varying accents
List all words containing accents
List all words = a concordance
Highlighting duplicated words
Page numbering PDFs
Word and phrase frequency
Checking for (and counting) duplicated sentences
Visualise where specific words/phrases are used
Checking hyphenation of word pairs
Transferring words from hyphenalyse to a stylesheet
Checking word pairs that are not hyphenated
Measure average sentence length
Highlight over-long sentences
Highlight over-long paragraphs
Show distribution of sentence lengths
Show distribution of word lengths
Show distribution of paragraph lengths
Count uppercase and lowercase characters
Count words that are highlighted
Copy paragraphs that contain highlighted (and coloured) text
Highlighting words not in vocabulary list
Point out repetitious use of words
Highlight repeated words in sentences
Highlight repeated words in paragraphs
Using repeated word macros avoiding track changes
List special sorts
List all words in a given font colour
List all text that is highlighted
List all URLs in a file
List all paragraphs starting with...
List all text in a given font or highlight colour
Split a document into two: coloured font or black
Making a sublist of items in a list containing a word or phrase
Making text boxes [textboxes] visible (+ odd fonts + trackchanges etc.)
Finding chronology words in context
Index items in a word list
Finding names/words/phrases in context
How many fields, and of what type?
10 Main pre-editing tool – FRedit ____
FRedit’s younger brother – MarkIt
11 Pre-editing tools ____
FRedit hint – switch track changes on
FRedit hint – using FRedit on multiple selections
FRedit hint – checking your FRedit list
Scripted F&R – simplified version of FRedit
Scripted F&R – a simple FRedit-like tool
IZ to IS spelling and vice versa
German and French quotes
Ignore this text – apply strikethrough
Strikethrough and colour selected text
Strikethrough all URLs
Strikethrough all equations
Strikethrough all code sections
Highlight certain characters with attributes
Highlight all italic text
Highlight all equations
Highlight all ‘equations’ that are actually now bitmaps
Space out MathType equations in running text
Space out MathType equations in whole text
Convert all Equation Editor items to text
Mark all quotations
Run a FRedit list
Run a FRedit List from a menu of lists
Multifile FRedit
Quicker creation of FRedit lists
Create a FRedit list from a proper noun query list
Create a FRedit list from a text list
Lines of text into paragraphs
Text exported from PDFs (or from OCR)
Rejoining hyphenated words (1)
Rejoining hyphenated words (2)
Correcting wrongly un-hyphenated words (global)
Correcting wrongly un-hyphenated words (selective)
PDFs with missing ligatures
PDFs with missing ligatures (2)
PDFs odd ASCII codes for ligatures
For OCR/PDF, underline all spelling errors
Multifile text compilation
Multifile Word compilation
Chapter file compilation
Multifile references compilation
Multifile track changes compilation
Loading multiple files from a folder
Text-only version of current document
Chopping into chapters
Chopping a file into sub-files, e.g. a book into chapters
List all files in a folder
Acronym list with frequency
Acronym list creator
Acronym finder
Create a list of acronyms and definitions
Tagged uppercase words changed to small caps
Make formatting tag invisible (hidden text)
Acronyms to small caps
Highlight incomplete paragraphs
Sort a list and remove duplicates
Sort case-sensitively
Sort blocks of text
Sort, ignoring first ‘word’
Sort list of names by surname
Sort reference list that has ‘ditto’ lines
Sort group of citations
Alphabetic sort in-line lists within a paragraph
Sort in-line citations by year
Add item to existing list
Table stripper
Tables to tab-separated text
Callout inserter
Move all figures out into a separate file
Edit the contents of table cells
Add em dash to every table cell
Add final character (full point) to every table cell
Add initial capital to every table cell selected
Remove/restore borders and rules of table
Textbox and frame removal
List all styles used in a document
Apply styles to textboxes
Copy text out of text boxes [textboxes] into main body of text
Footnote (endnote) fiddling
Delete all endnotes
Delete all footnotes
Unembed footnotes or endnotes
Re-embed notes
Unembed endnotes by sections
Renumber all superscripts
Renumber all note numbers
Sorting out messed-up footnote numbering
Endnotes/footnotes to inline bracketed text
Convert individual footnote to endnote or vice versa
Bracketed notes to embedded footnotes
Add a footnote (endnote) but in a different style
Renumber any list
Remove numbering from all headings
Delete all bookmarks
Delete all comments
Delete all comments by a specific author/editor
Transfer comments from square brackets to bubbles
Transfer comments from square bubbles to brackets
Add (and remove) serial numbers to (from) initials in all comments
Delete all comments that don’t have tags
Delete all comments that DO have a specific tag
Delete all hyperlinks
Unlink all fields except equations
Fields codes visible (or hidden)
Delete selected hyperlinks
Check each of the URLs
Citation and bibliography (references list) field conversion
Mendeley citations and punctuation correction
Delete all figures from a file
Delete all inline images from a file
Delete all inline images from a file and close the space
Delete all inline images from a file and add a call-out
Delete all paragraphs that are mainly italic
Convert combo boxes to text
Unbold every colon followed by roman text
Auto-lists to text
Full-out paragraph under all headings
Selective format changing
Raised/lowered text to super/subscript
Greek symbol font checker
Symbol font to unicode converter
Highlight all ‘funny’ fonts
Get rid of ‘rogue’ fonts
Get rid of ‘locked’ fonts
Funny font full facilities
Add thin (or other) space to units
Language selection
Highlight text not in main language
Mark long sentences
Ensure all sentences have two spaces following
Highlight all questions
Highlight all long quotations
Displaying long quotes
Highlight (and/or style) all indented paragraphs
Change the indent of specific indented paragraphs (1)
Change the indent of specific indented paragraphs (2)
Apply styles to all paragraphs except headings
Apply character style to headwords
Count the highlighted areas
Every ‘Normal’ paragraph to ‘Body Text’
Coding (tagging) every bold heading
Adding coding (tagging) automatically
Add line space after all tables before headings
Coding (tagging) displayed quotes
Coding (tagging) bulleted list
Formatting numbered list item
Adding bold to first word of list (glossary)
Using manual line breaks in and poetry (verses) and/or lists
Adding (coloured) tags to all italic/bold text
Adding (coloured) tags to selected text or to next bold text
Adding an <ni> tag to the first line after each heading
Listing all tagged section headings
Adding full point to ends of captions
Adding styles to numbered headings
Coding the first lines of a chapter
Showing style names within text (= adding style codes)
Simple number sequence checker
Decimal number sequence checker
Number sequence checker hierarchical
Contents list creator by style or number or tags
Find mismatched parentheses
Find mismatched double quotes
Find mismatched single quotes
Correct double quotes inside double quotes to singles
Section number adding
Automatic section numbering
Automatic section numbering (2)
Semi-automatic section numbering
Do ‘such and such’ to every ‘so and so’
Multiple choice answer tidier global
Highlight all serial commas (or not serial commas)
Count the serial commas (or not serial commas)
Highlight duplicate sentences
Check and correct the hierarchy of brackets/braces/parentheses
Remove all formatting except URLs
Apply global highlighting with track changes
Apply highlights and/or colours to ‘confusables’
Correct accidental double capitals
Correct spaces and punctuation on superscripted numbers
12 Editing – text change ____
Change case of next letter
Change case of initial letter of next word
Change case of initial letter of the paragraph
Paragraph to start lowercase and end with semicolon
Semicolonising a list (+ lowercase start letter)
Semicolonising a list
Lowercasing a list and no punctuation
Uppercasing a list and no punctuation
Adding full point to ends of bullet items
Type, delete or switch ‘the’/‘a’/‘an’ (‘The’/‘A’/‘An’)
Type ‘a’ (or ‘A’), ‘an’ (or ‘An’)
Type ‘that’
Type ‘the’
Add accents to characters
Add a macron to the next vowel
Add (real) bullets to a list
Reducing all-capitals to initial cap
Lowercase this phrase throughout
Select current word
Expand or contract the current selection, start or end
Select current sentence/paragraph/page
Select whole words
Delete this word
Delete the rest of the sentence
Delete to the next punctuation mark
Delete the rest of the line
Move final phrase in a sentence back to the cursor position
Remove final character of a word
Remove punctuation at end of a word
Remove quotation marks from both ends of some text
Remove the punctuation nearest the cursor
Single quotes round a word
Double quotes to single quotes
Single quotes to double quotes
Non-curly quotes
Typing text into quotes for notes to publisher
Transpose (swap) adjacent letters
Transpose the punctuation characters that follow
Transpose (swap) two previous letters
Transpose (swap) words
Turn current word into a plural
Abbreviation swap
Making common punctuation changes (1)
Change punctuation between words (2)
Change punctuation between words in dialogue
Changes proper noun to personal pronoun
Numbers (figures) to text
Convert numbers (text) to figures (1–10)
Convert the next number (text) to figures (1–999)
Adjust numbering – increment and decrement
Adjust lettering – increment and decrement
Change ampersand to and
Change percent symbol to words
Change ‘to do’ into ‘for doing’ – and vice versa
Change ‘filling’ into ‘filled’ – and vice versa
Change future tense into present perfect (Dutch)
Single/double curly quote
Apostrophe
Switch UK curly quotes on and off
Single/double curly German-style quote
Single/double curly French-style quote
Single/double prime
Letter ‘x’ to times/multiply character
Next space to hard (non-breaking/fixed) space
Change double quotes to guillemets
Add quotes to a phrase
Add parentheses round the current word/phrase
Add ‘things’ round the current word/phrase
Delete pairs of parentheses, quote marks or commas
Change quotes on a phrase – double to single
Add a comma
Hyphen to dash
Punctuation to comma
Punctuation to full point (period)
Hyphen to minus sign
Hyphen/dash/hard space to space
Dash or (hard) space to hyphen
Punctuation to hard space
Punctuation to thin space
Type a thin space
Delete next punctuation mark
Punctuation inversion
Join two words
Word pair (un)hyphenated or single word
Change or add ‘that’ and ‘which’
Common word/phrase switch
Extending the use of MultiSwitch
Search and then MultiSwitch
Search and then change to alternate
Load text from a menu into the clipboard
Multiple clipboard
Quick word switch
Quick character switch
Quick character switch(2)
Centre text
Bulleted list item to initial uppercase
Auto-bulleted list item to initial lowercase
Highlight all lists
Highlight all paragraphs of a range of word lengths
Title case in quotes – capital on principal words only
Add quotes and title cap
Remove quotes and remove caps
Headings: sentence case
Heading: sentence case (2)
Book titles (i.e. Italic) to title case
Convert text (heading) to title case OR sentence case
All caps to title case
Superscript next note number
Apply/remove italic/bold
Removing styles and attributes from text
Italicising variables in an equation (1)
Italicising variables in an equation (2)
Romanise an existing italic
Romanise italic/bold punctuation
Make a phrase italic
Italicise biological binomial species names
Make italic text more easily visible
Applying funny underlines
Sub/superscript on/off
Italic to single (or double) quote toggle
Applying an attribute to some text
Select highlighted text
Paste as unformatted text
Getting pure text from PDFs and websites
Copy and paste styles
Unify the style of a paragraph or selection
Copy to and paste from the spike
Adding tags (codes) locally
Tagging displayed quotations
Tagging bits of text
Tagging lists
Tagging captions
Checking continuity of tags
Border off paragraphs
Find and replace apostrophes
Inserting special characters (accents)
Inserting special characters (Greek)
Inserting special characters (scientific)
Move date within reference
Add dates to reference citations
List all references in the notes (for converting to short title)
Change author forenames in references list to initials
Reinsert author name, instead of dash in references list
Check/change author/date formatting in references list
Convert uppercase surnames to initial capital
Lowercase author surnames in references list
Reduce the number of authors in a references list to three
Reduce multi-author citation to ‘Bloggs et al.’
Highlight all multi-author citations in text
Change author name order in references list
Move date (year) to end of line in references list
Swap initials and surname
Swap initials and surname, move date, etc.
Check alphabetic order of references list (well, any list)
Check Vancouver reference citations
Collate all reference lists into one big list and sort it
Type in today’s date
Compare two sentences
Setting space before/after paragraph to specific values
Reading and setting indents
Setting indents to specific values
Formatting current paragraph as displayed text
Format numbers – at cursor or in a selection
Selectively delete Oxford commas
Switching the ruler display on and off
Add ‘However’ at start of a sentence
Set a current word(s) to small caps
Replicate the edit you just made
Move selected text to start of sentence
Moving list items (paragraphs) around speedily
13 Editing – information ____
Identifying the next character
Show any ‘funny’ codes in the text
Spellcheck a single word
Spellcheck with language warning
Spellcheck and auto change
Delete all spelling errors in a file
Show (or not) spelling errors in a file
Count this word/phrase
Count hyphen/space/single word
Count words remaining
Count italic text
Count words within sections
Count pages within chapters
List all the italic words
Multifile word counting
Totalling words from various places
Check the column totals
Check the totals of a set of consecutive numbers
What is the full filename?
Get information from Google etc
Set up your own Fetch macro (1)
Set up your own Fetch macro (2)
Fetch from multiple dictionaries
Using Google to search a specific site
Launch successive URLs from the text
Turn URL or email address into a live link
URLs to active links
Reduce the text extent of an active link
Unlink all the URLs
Email addresses to active links
Show all formatting or just paragraph marks
Show various formatting marks and hide highlighting
Show all text in a different font size
14 Editing – highlighting ____
Add and remove highlights (basic)
Red text on/off
Highlighting – pick a colour!
Highlighting – pick a colour (II)
Text font colour – pick any colour!
Remove all highlight/colouration of current colour
Remove all highlighting (and colouring)
Remove all highlighting except...
Remove all highlighting and colouration but not on program text
Fixed spaces (and tabs) visible
Highlight same text
Font colour same text
Remove highlight from this word
List all highlight colours used
List all highlights used
Not highlight but background colour
Highlight punctuation issues
Highlight punctuation issues (2)
Highlight roman punctuation following italic text
Highlight/colour all the words/phrases in a list
Highlight all the edits in a text
Adding borders to text
Removing borders from text
Splitting and joining paragraphs
15 Editing – navigation ____
Navigation pane customization
Open navigation pane your size and position
Temporary bookmarks
Instant find
Instant find – case sensitive
Instant replace
Instant find clipboard
Clear odd find conditions
Instant find particular formats
Find in another file
Find in context
Find combinations of texts
Find any of a set of searches
Copy text into the F&R box
Find within deleted text
Multi-purpose find
Old-fashioned find for Word 2007/2010
Versatile searching via wildcards
Find highlighted text
Find coloured text
Jump from (heading) style to style
Jump from (any) style to style
Jump to next applied style
Jump back to table of contents
Jump from comment to comment
Jump into and out of a comment
Jump from edit to edit
Jump from footnote to footnote
Jump between main text and footnotes/endnotes
Jump from (section) number to number
Jump down through (section) numbers
Jump to an item in an auto-numbered list
Jump to next/previous table
Jump to next/previous paragraph that has borders
List all figures/tables/boxes
Create a list of all fig/tab/box captions
Find short paragraphs (lists)
Highlight all lists
Go to page
Easier scrolling
Lost cursor – where was I?!
List of headings
List of headings by style
Show paragraph style colour + applied colour
Display and/or speak the style of a paragraph
Find any of these words
16 Editing – comment handling ____
Jump from comment to comment
Creating (modern) comments using macros
Menu-based creation of (modern) comments
List all modern comments
Delete modern comments
Author query list compilation
List all (old) comments
List all comments – with numbers
List all comments – with ‘all sorts of stuff’
Add a comment
Add a comment from a menu
Add a comment from a menu
Add a comment – simple version
Add a comment from a file
Open the comment pane
List all commented paragraphs
Collect all comments in a set of files
Add or remove fixed comment initials and numbers
Add comment initials and numbers to text
Edit the initials within comments
Delete all comments
Add a comment from a list to a PDF
Add a comment from a list into the main text
Change the scope associated with a comment
Change the names associated with the comments
Solve problems when typing text into comment bubbles
17 Editing – track changes ____
Track change on/off
Don’t track change this edit
Accept or reject track change
Reject track change on specific word/phrase
Track change markup showing or not
Aspects of track change markup showing or not
Track changes reminder
Accept all formatting track changes
Accept specific types of track changes
Accept/reject track changes
Accept track change of specific author/editor
Accept tracking and move on to the next
Simplify track changes
Consolidate track changes
Navigating track changes
Compare documents by using track changes
Using find and replace despite track changes being present
Count the number (of words) of track changes in a document
Create a file of all sentences containing any tracking
Lists the date and time of all track changes
18 Other tools ____
Open a split screen
Improving Word 365’s Dictate
Hints & tips for Word 365’s Dictate
Visible countdown
Easy loading of specific files
Rescuing a corrupt file
Rescuing a corrupt file with equations
Proof checking – file preparation
Proof checking – check page numbers
Proof checking – contents list check
Proof checking – index spot-check
Semi-automatic reference checking
Automatic reference citation checking
Semi-automatic short-title reference citation checking
Add word/text to list
Save files as PDF
Save duplicate set of files
‘Save as’ current file, but with index
Open the window at specific size, position and magnification
Accept track changes in a set of files
Show all hidden text in a set of files
Overtype beware!
Reverse order of list
Show/hide graphics
Unicode lister
Open the customize keyboard dialogue box
Custom keys lister
Automatically saving and restoring macros and keybindings (keystrokes)
Saving and restoring your macros and keybindings (keystrokes)
Saving and restoring all your keybindings (keystrokes)
Have you got the latest versions of the macros?
Update a macro, but keep the keystroke
Table of contents updater
Macro list indenter
Wiki page editing
Forum post editing
WhatsApp post editing
Adding elision to index
Basic indexing (1)
Basic indexing (2)
Playing card suits
Mark file as ‘final’
Maximize/minimize the ribbon
Select this macro text
Obfuscate/anonymise/enigmatize a file
Check the length of tweets
Manage your autocorrect items
Embolden first occurrence of certain words
Launch your macros from a menu
Macros for downloading macros
Use Word as a simple slideshow system
Load one (or more) of several files

Finding the macros: Note that the macros are stored separately, in the second volume of the book: The Macros. The name of the macro is given at the end of each macro description. You can use that name to search through The Macros for the particular macro you want.

[bookmark: _Toc55977111][bookmark: _Toc164352895]Macros can take a long time to run!
General macro warning: Some of the more complex macros can take a long time to run, so if nothing seems to be happening, please be patient. The worst thing you can do is to click on the screen to try to see if anything is happening. Word sometimes crashes when you do that.
[image: May be a meme of text]

[bookmark: _Toc55981576][bookmark: _Toc55981674]Other notes:
[bookmark: _Toc55981577][bookmark: _Toc55981675]Printing the book? – This is intended to be an electronic document, but if you do decide to print it, you can improve the printout page coverage: either (a) delete the two comments in the section headed ‘Add a Comment’, or (b) go to Review toolbar, look at Track Changes, and select ‘Final’, and not ‘Final: Show Markup’.
[bookmark: _Toc55977112][bookmark: _Toc164352896]Mac users start here, please
I don’t own a Mac (though I did for about 12 years, starting in the days of the MacPlus (1988) with its 9″ B&W screen!), but I’ve done my very best to make my macros Mac-compatible. A couple of points to note:

1) None of these macros will work with Word 2008 because it can’t run macros written in Visual Basic.

2) With the possible exception of the multifile macros, all of the macros should work with Word 2011 and later. If you find any that cause problems, please let me know (I’ve had no error reports since about 2015/16).
[bookmark: _Hlk58421551]
In the Mac version of Visual Basic, the file handling has some issues with some versions of the Mac operating system, so I can’t absolutely guarantee that my multifile macros will work without problems. Mac users who have used them say that it seems to work OK provided that the names of your files are relative short; best to keep them less than, say, 18 characters long.

3) One macro, DocAlyse, can sometimes say ‘Compile error: procedure too large’. If you get this error, try using the macro, DocAlyseForMac. If even that gives the same error, try DocAlyseForThinMacs, and if even that gives the error, try DocAlyseForVeryThinMacs. Each has slightly less functionality than the previous version.

These macros are also available from:
 DocAlyseForMac
 DocAlyseForThinMacs
 DocAlyseForVeryThinMacs

[bookmark: _Toc55977113]N.B. Please don’t assume that, if there’s an XxxxForMac macro, you ought to use it. You only need to use the Mac version if the generic version gives an error. In any case, the Mac version sometimes has reduced functionality, so please use the generic version if you can.

[bookmark: _Toc164352897]Introduction ____
What is this document?
This is a freely distributable set of computer tools (macros) for use with Word, programmed by and for editors and proofreaders. (Writers and author will also benefit from using some of these macros because they have to read and edit their own texts to try to make them more consistent.) If this book is useful to you, please use it. If you think that others will find it useful, please pass it on. However, the copyright remains with the author, Paul Beverley, and if you want updated versions of these macros, they are always available from my website at:
www.archivepub.co.uk/TheBook

Disclaimer: Many parts of this book have not been edited or proofread, and I can’t guarantee that the macros won’t go wrong, but I’ll do my best to correct anything that you bring to my attention. I keep updating the book, often on a daily or weekly basis, so as a whole it’s a ‘work in progress’. Thanks for your tolerance.
Paul Beverley, paul@archivepub.co.uk
[bookmark: _Toc55977114][bookmark: _Toc164352898]Who is Paul Beverley?
After spending over 20 years writing, editing and publishing using Macs and Acorns, I became a freelance technical proofreader in 2005. Later I began doing editing, using Microsoft Word on a Windows PC. Through active CPD, I became an Advanced Member of the UK’s Society for Editors and Proofreaders, and was then awarded a Licentiateship of the City & Guilds Institute in Editorial Skills.

On the old Acorns, I had developed a number of editing tools, so when I moved to MS Word I missed them, but I soon discovered macros – and they have allowed me to develop even more sophisticated tools than I had used previously. So I thought that other editors might like to benefit from my development work – no point in reinventing the wheel.

Is this pure altruism on my part? Am I keen to enable my rival freelance editors to improve their work rate and increase the consistency of their output? Well, yes, I do find it satisfying to discover that others are benefitting from my efforts – who wouldn’t?! But I also hope that, by making these macros freely available, I might increase my range of contacts around the world (these macros can be used in other language groups – they aren’t just restricted to English language users).

[bookmark: _Toc55981578][bookmark: _Toc55981676]Now with added training ...
In fact, since I first released this book in January 2010, I have started running training workshops. If you want to get a group together and invite me, I’d be happy to come and do a demonstration, to whet your appetite, or I could run a workshop where you install macros on your laptops and I would then provide help, instruction and encouragement.
Unlike the book, that training would not be free, but in most cases, I only charge for my expenses. There is not normally a tuition fee. The thing is I’m partially retired, and doing training gets me out of my home-office, and I really enjoy making new friends. I’m happy to travel (almost) anywhere in the world – you ‘only’ have to pay my expenses, and I’m happy to travel to new countries.
[bookmark: _Toc55977115][bookmark: _Toc164352899]Quick start
If you already know about macros and just want to see what this book has to offer, please go straight to ‘My twelve favourite macros’.

[bookmark: _Toc55977116][bookmark: _Toc164352900]Non-programmers start here
(This video might help: youtu.be/pN8SO6E8dLg)

If you already realise the value of Word macros but you feel nervous about using them because “I’m not a programmer”, let me try to reassure you on a number of issues.

[bookmark: _Toc55981579][bookmark: _Toc55981677]What is a (Word) macro?
It’s a computer program which, in general terms, can ‘do things with words’. As with computer programs generally, macros can be small programs to do very simple jobs, or they can be long complicated ones that do very sophisticated tasks.

[bookmark: _Toc55981580][bookmark: _Toc55981678]Why use macros?
Since ‘doing things with words’ is what an editor does, maybe some of the tasks that we do manually could, to some extent, be automated by using macros. This could
	– allow us to complete each job more quickly
	– help us to produce a more accurate and consistent end result
	– allow us to spend more time doing the interesting things – i.e. engaging with the text – and less time doing the boring repetitive jobs.

[bookmark: _Toc55981581][bookmark: _Toc55981679]Who should use macros?
Generally, macros are of most use to those who do on-screen editing, but anyone who has to edit Word files – for whatever reason – could benefit from using macros.

Proofreaders too can benefit greatly from using some of the macros, as explained in the section ‘My six favourite macros (as a proofreader)’.

[bookmark: _Toc55981582][bookmark: _Toc55981680]But I’m not a programmer!
[bookmark: _Hlk112169028][bookmark: _Hlk57017013][bookmark: _Hlk112169000]That’s not a problem. You don’t need to be a programmer. This book offers a huge range of different macros – written specifically for editors – so to get started, you don’t need to learn how to program your own. As you gain confidence, you can start by making changes to my macros – Jack Lyon’s Macro Cookbook (ISBN: 9781434103321) is essential reading for that.

www.barnesandnoble.com/w/macro-cookbook-for-microsoft-word-jack-m-lyon/1107868228

But to use the macros in this book, you only need to learn how to load macros into Word – full instructions are given below. Once the macros are loaded, you just use them.

[bookmark: _Toc55981583][bookmark: _Toc55981681]How do I run a macro?
There are three ways in which a macro can be run:
a.	Open the Macros menu and select it from the list of macros, and click Run.
b.	Add an icon to the toolbars at the top of the Word screen – one icon for each macro.
c.	Use keyboard shortcuts – one for each macro.
 How to set up (b) and (c) is explained below.

[bookmark: _Toc55981584][bookmark: _Toc55981682]What jobs can macros do?
That’s a bit like asking, ‘What jobs can woodworking tools do?’ The answer is that there are many different tools and they do many very different jobs. It takes time and effort to learn how to use the different woodworking tools, and so it is with macros. I just hope that you find it as enjoyable, profitable and satisfying as I do.

[bookmark: _Toc55981585][bookmark: _Toc55981683]But aren’t macros dangerous?
Yes, they are very dangerous! All carpenters know that circular saws and other power tools are extremely dangerous. They have to use the right tool for any particular job, and they have to use it in the right way. If they spoil a piece of wood by using a power tool, it’s not the fault of the power tool! But with experience, you will be able to use macros more and more effectively.

If you misuse macros, you can produce poor quality text, but macros can’t damage your computer in any way.

Also, you should know that the macros cannot attach themselves to your clients’ files. Your clients will not know whether you did the job entirely by hand, or whether you were ‘macro-assisted’.
[bookmark: _Toc55977117]
[bookmark: _Toc164352901]01 Introduction to macros ____
(Videos: My first macro – Part 1 youtu.be/hi4QCQy1QWg and Part 2: youtu.be/KFOVs3qBomY)
[bookmark: _Toc55977118][bookmark: _Toc164352902]What is a macro?
One way to think of it is that it’s an ‘app’, like the ones you use on your phone. So it’s a bit of computer wizardry that ‘does things’. We might say...

	A macro is an app.
	A macro is a computer program.
	A macro is a bit of computer code.
	A macro is a computer subroutine.

Unlike with apps, you do have to ‘handle’ the computer code, but if you know how to copy and paste, you’ll be fine.

Macros use a computer language called Visual Basic for Applications (VBA), and just as you might copy and paste some text out of Word into an email (or out of an email into Word), so you need to copy the text of macros into VBA. That’s as complicated as it gets.
[bookmark: _Toc55977119][bookmark: _Toc164352903]The elements of a macro
Here’s a very simple macro – I’ve coloured the important bits.

Sub Swap Characters()
Selection.MoveEnd 1
Selection.Cut
Selection.MoveLeft 1
Selection.Paste
End Sub

I said a macro is a subroutine, right? So the Sub(routine) and End Sub(routine) are the ‘markers’ that show where the macro starts and ends. It’s important, when copying and pasting macros, to maintain this pattern of Sub/End Sub.

The SwapCharacters is the name of the macro. This is important, because that’s how you tell the computer what you want it to do: “Please run the macro called SwapCharacters”.

The name must be unique – the computer gets confused if you paste two macros into VBA that have the same name.

To take advantage of what the macros in this book can do, you need to know where to store them (within the VBA application) and how to run them from within Word.
[bookmark: _Toc55977120][bookmark: _Toc164352904]Storing your macros
Macros can be stored in various places in your computer, but the simplest place is within Word’s Normal template. This is the most convenient place because they then are available for use with any file(s) that you are working on.

(You might hear people saying that it is dangerous to store macros in the Normal template. It is true that there were once problems with doing so, but that was back in the days of Word 97 and 2003. As far as I’m aware, this hasn’t been a problem since Word 2007 onwards.)

The macros are stored inside the Normal template, one after the other, in a Visual Basic file called Normal.NewMacros. Here’s part of my Normal.NewMacros file to show you what the macros look like when viewed in VBA (please don’t worry about the content of these macros, or what they do – just note the way that they are stored):

..
Sub SubscriptSwitch()
' F4
Selection.Font.Subscript = Not Selection.Font.Subscript
End Sub
..

Sub SuperscriptSwitch()
' F5
Selection.Font.Superscript = Not Selection.Font.Superscript
End Sub
..

Sub Mu()
' Version
Selection.TypeText Text:=ChrW(956)
End Sub
..

Sub FontRemove()
' Version
On Error GoTo ReportIt
Selection.Font.Reset
Exit Sub
ReportIt:
beep
End Sub
..

There are just three important things to understand here:
•	The macros are all stored together in a single file, but they don’t have to be in any particular order – they are run from Word by name.
•	It’s a single file, so you can select all the macros (Ctrl-A) and copy them (Ctrl-C). You can then paste them somewhere else, perhaps in a Word file, as a way of keeping a backup copy.
•	When adding or removing macros be very careful not to break that repeated pattern of Sub ... End Sub which I’ve again highlighted to make it stand out.

Tip: Below, I explain about how to add a macro, but rather than just reading it in theory, why not choose a particular macro and actually install it. You could try the transpose characters macro that I gave as an example above.

Sub TransposeChars()
 Selection.MoveRight 1, Extend:=wdExtend
 Selection.Cut
 Selection.MoveLeft 1
 Selection.Paste
End Sub

It transposes adjacent characters, say from ‘Pual’ to ‘Paul’ – you just put the cursor between the ‘u’ and the ‘a’ and run the macro.
[bookmark: _Toc55977121][bookmark: _Toc164352905]Adding macros
Macros can be added simply by copying them from this book and pasting them into Normal.NewMacros. So, in this book, make sure that you select the complete macro, from

Sub Something()
to
End Sub

and press Ctrl-C to copy it. Then open VBA (see below), decide where to put the new macro and press Ctrl-V to paste it in. I tend to put new macros down at the bottom of the file (click Ctrl-End to get to the bottom), but it really doesn’t matter, because Word calls them by name.

(N.B. This book is arranged as two files: this file has the descriptions of the macros, and the other file, ‘TheMacros’, has the actual macro listings.)

The difficult thing is knowing how to open Normal.NewMacros in VBA – it is different on different computer systems!

[bookmark: _Toc55977122][bookmark: _Toc164352906]Installing a macro from scratch
(See also video: My First Macro – Part 1 (6:04): youtu.be/hi4QCQy1QWg)
(See also video: My First Macro – Part 2 (5:45): youtu.be/KFOVs3qBomY)
(See also video: Macro Starter Pack (5:42): youtu.be/IeMnmtJT2Ys)

Macros can be added simply by copying them from an electronic book, from a website or from an email, and pasting them into a program called Visual Basic for Applications (VBA), where they will be stored in the ‘Normal template’, as it’s called. I’ll try to explain in a number of small steps.

Step 1: Copy the macro
Wherever the macro comes from, you first have to select it and then do a Ctrl-C to copy it. (On a Mac, that’s Command-C, ⌘-C.)

However, you do need to make very sure that you select the complete macro, i.e. from the

	Sub SomethingOrOther()

down to and including the

	End Sub

before you press Ctrl-C (Mac: ⌘-C) to copy it.

Step 2: Open VBA
VBA is a separate application that works alongside Word. The computer programs in VBA are called macros. These macros can be used from within Word without VBA actually being on screen. However, to install your macros in the first place, you have to open VBA, as follows:

Click on Alt-F8 (Option-F8 on a Mac), and it should open the Macros window. (If not, on Word 2003/4 you can use the menu: Tools–Macro–Macros, or on 2007 onwards View–Macros.)

 [image: Sprite]

In the middle of this window is a list of all the macros that are currently installed in your computer. But of course, if no-one has yet put any macros in your computer, the list will have no items in it:

[image: Sprite2]
Now, in the top box (Macro name:) type the single word Dummy, and click the Create icon (fourth down on the right). VBA will now open, showing:

Sub Dummy()
'
' Dummy Macro
'
'

End Sub

Step 3: Paste in your new macro
Select the whole of the Dummy Macro, from the Sub Dummy() line up to and including the End Sub line, and then click Ctrl-V (Mac: ⌘-V). This will put your new macro in place of the Dummy macro.

Step 4: Close VBA
You can usually do this with Alt-Q (⌘-Q), but you can also do it by clicking in the top right ‘X’ (Close) icon – but notice that there’s another ‘X’ just below it, so click in the very top icon.

Step 5: Running your new macro
To run your new macro, use Alt-F8 (Option-F8), to open the Macros window again (or Tools–Macro–Macros or View–Macros). Look in the list of macros for the one you want, click on it and then click Run (top right button).

Once you are familiar with this, there’s a simpler way to add a macro: Press Alt-F8 to open the Macros window, click on any one of the macro names, click on the Edit button, then you can paste in the new macro. However, you must be very careful where you put the new macro! You must be careful not paste the new macro inside one of the existing macros; it must go after and End Sub, and before the next Sub SomethingOrOther. Probably the safest is to use Ctrl-End to go to the very end of the VBA macros, and paste the new macro in there.

[bookmark: _Toc322528996][bookmark: _Toc322529282][bookmark: _Toc322532200][bookmark: _Toc323639025][bookmark: _Toc324022143][bookmark: _Toc324232921][bookmark: _Toc324495537][bookmark: _Toc324601161][bookmark: _Toc326501179][bookmark: _Toc326507407][bookmark: _Toc327024961][bookmark: _Toc327374736][bookmark: _Toc329116677][bookmark: _Toc329173084][bookmark: _Toc338164745][bookmark: _Toc342295859][bookmark: _Toc342403518][bookmark: _Toc342484759][bookmark: _Toc342672919][bookmark: _Toc345584632][bookmark: _Toc345584941][bookmark: _Toc346007542][bookmark: _Toc347147508][bookmark: _Toc348886606][bookmark: _Toc348886921][bookmark: _Toc348986826][bookmark: _Toc349132916][bookmark: _Toc350247835][bookmark: _Toc350249647][bookmark: _Toc350434719][bookmark: _Toc354080095][bookmark: _Toc355260047][bookmark: _Toc356752761][bookmark: _Toc357276037][bookmark: _Toc359249552][bookmark: _Toc369984573][bookmark: _Toc371759172][bookmark: _Toc371762111][bookmark: _Toc382844277]
[bookmark: _Toc164352907]02 Downloading and running macros ____
[bookmark: _Toc164352908]Downloading macros from the internet

The macros in the TheMacroAll Word file are also available individually from the internet. If you want, say CaseNextChar, the URL is:

http://www.wordmacrotools.com/macros/C/CaseNextChar

or for FRedit, it’s:

http://www.wordmacrotools.com/macros/F/FRedit

But these URLs are available as single-click links, and also via macro-fetching macros.

Macros for downloading macros
There are three macros created for this purpose, and they can specify the macro name in two ways. The point is that the macro names must be correctly ‘cased’, so if you want CaseNextChar, it’s no good trying to use ‘Casenextchar’; this will fail to find the macro you’re looking for.

So, rather than having to type out the name, each of the downloading macros starts by looking at the text currently in the clipboard. If you had selected and copied a macro name, say from an email or a web page, you can just click in a Word file – any Word file – and run the relevant macro.

If the clipboard doesn’t contain a single word that looks like a macro name, then the fetching macro looks instead at the word at the cursor in the currently open file, and assumes that’s the name of the macro you’re wanting to download.

The first macro, MacroFetch, creates the relevant URL and launches it to our website.

The second macro, MacroFetchKeystrokeRead, is for use if you’re wanting to update a macro that has a keystroke already allocated to it.

1) Type out, or click in, the name of the macro to be updated and run this macro. The result will be, for example:

	HyphenAlyse Alt+Ctrl+Shift+H

but at the same time, the macro launches the relevant page on the Word Macro Tools website, giving the latest version of that macro to be updated.

2) Select and copy the new version.

3) In VBA, delete the current version of the macro (or rename it, if you want to keep it temporarily).

4) Paste in the new version.

5) Go back to the file above (check the cursor is still at the end of the keystroke definition) and run this macro again.

That’s it. Macro updated and keystroke restored.

The third macro, MacroFetchUpdate, is for use if you’re wanting to update a macro that has a keystroke already allocated to it. So, as with MacroFetch, have the macro name as a word at the cursor, and run the macro. It will type out the name of the macro and its keystroke in a new Word file.

[bookmark: _Hlk105670769]Next select and copy the macro; return to your Word file and use the Macros window (Alt-F8 or Option-F8) and delete the current version of the macro that you’re upgrading. Go into VBA and paste in the new version and then run MacroFetchUpdate again. This time, instead of fetching a macro, the macro will read the keystroke from the Word file and allocate it to the new version of the macro.

[bookmark: OLE_LINK2]The third macro, MacroNameToLink, takes the macro name, as before, and simply creates the relevant URL and puts it into the clipboard, from where it is ready to be pasted for whatever purpose. So, you could paste it into an email to give to someone, or paste it into a web browser to examine the macro.

Sub MacroFetch()

Sub MacroFetchKeystrokeRead()

Sub MacroFetchKeystrokeReadMac()

Sub MacroFetchUpdate()

Sub MacroNameToLink()
[bookmark: _Toc55977123][bookmark: _Toc164352909]Running the macros
There are basically three ways you can run macros:
1.	from the Macros dialogue box
2.	by adding an icon to the toolbar at the top of the Word screen
3.	by pressing a particular key combination.

I use the dialogue box for those macros that I use very rarely, but I never use icons (2). I run 99% of my macros from keystrokes because it’s so much faster than using icons. Once you get more than a small number of icons for macros, it just becomes impractical to use icons.

“But I can’t remember keystrokes!” OK, let me ask you a question: do you have to remember where the gears are in your car? If you do something often enough, it becomes automatic. What’s more, there’s a pattern to the gears, which helps. So I suggest that you make a ‘pattern’ for your keystrokes. Use keys that have some significance to you, and/or use various key combinations with the F-keys, and put a strip of card with the macro names written on it. For very frequently used keystrokes, I suggest that you use a key combination that you can press just with your left hand, and/or keys on the numeric keypad with your right hand – the numeric pad means that it’s less far for you to move your hand away from the mouse.

[bookmark: _Toc55977124][bookmark: _Toc164352910]“What keystrokes should I use?”
I often get asked this, but keystrokes are only any use if you can remember them (obviously!), so they really have to be your choice. And there’s one more factor to stop me telling you what to use: on some computers, some special keystrokes have been taken over by certain other software or hardware features, e.g. video cards.

So, how would I advise you on what keystrokes to choose?

First, for any keystrokes you use regularly, the choice doesn’t have to be of a significant letter because you will remember them anyway. So my advice for those you do use regularly, is to assign them to easy left-hand-only movements, which will be fast, and you can leave your right hand on the mouse. So, for me, CaseNextChar is Alt-S, and MultiSwitch is Alt-Q.

After that, for me, other commonly used macros go on Alt/Ctrl/Shift combined with keys on the numeric keypad, e.g. HighlightPlus (Minus) are Ctrl-Alt-Num+ (Num-), and ColourPlus (Minus) are Ctrl-Shift-Num+ (Num-)

The other thing I do is link the keystrokes, so as CaseNextChar is Alt-S, CaseNextWord is Ctrl-Alt-S.

Then I use Ctrl-Alt-Q for SwapWords, Ctrl-Shift-Q for SwapCharacters, and Shift-Alt-Q for SwapPreviousCharacters.

Then Ctrl-Alt-. is FullPoint, Ctrl-Alt-, is Comma, Ctrl-Alt-; is Semicolon etc.

And Ctrl-Alt-Shift-' is PunctuationToSingleQuote, Ctrl-Alt-Shift-" is PunctuationToDoubleQuote, etc.

For those macros you don’t use very often, my rule is, if you can’t remember the allocated keystroke, run CustomKeys and, in the ‘Press new key’ slot, type the keystroke you think is allocated to the macro you want to run. If it is not allocated to that keystroke, then change it so that it is! In other words, that keystroke was intuitive to you, and so that’s the keystroke you’re most likely to remember, so use it.

[bookmark: _Toc164352911]“But which keystrokes can I use?”

You can use any of the letter keys or number keys or symbol keys, and each of those keys can be combined with:

Alt
Ctrl-Alt
Shift-Ctrl-Alt
Shift-Ctrl
Shift-Alt

(Sorry, this will be different for Macs, so if someone could send me some explanatory text, I’ll include it. Thanks.)

And note that some of the numeric keypad keys are independent from the main keys, e.g. the +/= keytop on the main part of the keyboard is totally different from the + key on the pad, but the Enter key on the pad is exactly the same as that on the main part. Also, some of the Shift/Alt/Ctrl combinations with keypad keys have special functions.

Then there are the function keys. The point about those is that you can stick a keystroke card on the keyboard, above the function keys. This will need to have five sets of twelve suitably spaced boxes, into which you can write a word/words to show which macro each runs.

Two points of caution here: (1) some of the function key combinations (as well as simply pressing the F-key without a modifying key) will be used by other functions in Word and/or in your computer in general, e.g. Alt-F9 toggles the visibility of the field codes in the document.

(2) On some keyboards – especially laptops, and increasingly on stand-alone keybords – pressing the function keys does not generate a normal F-key action, but rather, say, Sound up, Sound down, Sound on/off, etc. For the actual F‑key action, you also have to press a Fn key. These keyboards are therefore limited in the ease of use of the F-keys. For example, if I wanted to use Ctrl-Alt-F5 (which is what I’ve used for FRedit for 16 years!), I’d have to press Ctrl-Fn-Alt-F5, and using all three of Ctrl/Alt/Shift is bad enough!
[bookmark: _Toc55977125][bookmark: _Toc164352912]Allocating a keystroke (Word 2013 and 2010)
(Video: youtu.be/XXs6z-QhzPw)
1.	Right-click on part of the ribbon (on easiest is to click on one of the tabs) and click on ‘Customize the Ribbon’.
2.	Underneath the left-hand column, below the scrollable window, it says ‘Keyboard shortcuts: Customize’ Click the ‘Customize’ button next to it.
3.	In the Customize Keyboard window that appears, in the left-hand list (Categories), find ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).
4.	The right-hand list becomes (not surprisingly) ‘Macros’. Select your chosen macro name.
5.	Click in ‘Press new shortcut key’ and do just that: press the keyboard shortcut that you want to associate with this macro.
6.	To the left of that box is a ‘Current keys’ box. This box shows whether that macro already has a keystroke assigned to it. Also, immediately under that box is a line telling you whether the keystroke you pressed is currently assigned to something else – another macro or a Word command or a special character – or whether it is currently ‘Unassigned’.
7.	If you’re happy that you want this keystroke to be uniquely linked to your selected macro then click the ‘Assign’ button.
[bookmark: _Toc55977126][bookmark: _Toc164352913][bookmark: _Hlk66377995]Allocating a keystroke (Word 2011/365 – Mac)
1.	On the Tools menu, click ‘Customize Keyboard’.
2.	In the Customize Keyboard window that appears, in the left-hand list (Categories), find ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).
3.	The right-hand list becomes a list of the macros that are installed. Select your chosen macro name.
4.	Click in ‘Press new keyboard shortcut’ and do just that: press the keyboard shortcut that you want to associate with this macro.
5.	Above that box is a ‘Current keys’ box. This box shows whether that macro already has a keystroke assigned to it. Also, immediately under the ‘new keyboard shortcut’ box is a line telling you whether the keystroke you pressed is currently assigned to something else - another macro or a Word command or a special character – or whether it is currently ‘Unassigned’.
6.	If you’re happy that you want this keystroke to be uniquely linked to your selected macro then click the ‘Assign’ button.
[bookmark: _Toc55977127][bookmark: _Toc164352914]Allocating a keystroke (Word 2007)
1.	Click the ‘Customize Quick Access Toolbar’ menu – the little down-arrow at the right-hand end of the Quick Access Toolbar (QAT).
2.	Choose ‘More Commands’.
3.	At ‘Keyboard Shortcuts’ at the bottom of the box, click ‘Customize’.
4.	In the left-hand list (Categories), select ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).
5.	Click in ‘Press new shortcut key’ and do just that: press the keyboard shortcut that you want to associate with this macro.
6.	To the left of that box is a ‘Current keys’ box. This will show whether that macro already has a keystroke assigned to it. Also, immediately under that box is a line telling you whether the keystroke you selected is currently assigned to something else – another macro or a Word command or a special character – or whether it is ‘Unassigned’.
7.	If you’re happy that you want this keystroke to be uniquely linked to your selected macro then click the ‘Assign’ button.
8.	Then ‘Close’, and your keystroke is ready to use.
[bookmark: _Toc55977128][bookmark: _Toc164352915]Allocating a keystroke (Word 2002/3)
1.	Open the ‘Tools–Customize’ tab.
2.	Click ‘Keyboard’.
3.	Then, in the left-hand list (Categories), select ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).
4.	The right-hand list becomes (not surprisingly) ‘Macros’.
5.	Select the macro name.
6.	Click in the ‘Press new shortcut key’ box.
7.	Press the keystroke you want to use.
8.	Just below that box, a line will appear saying ‘Currently assigned to:’ and, hopefully, ‘[unassigned]’.
9.	If it is already assigned to another function within Word, you’ll have to decide if it is a function that you would want to use via a keystroke and, if so, choose a different keystroke.
10.	Click ‘Assign’.
11.	Then ‘Close’, and your keystroke is ready to use.

[bookmark: _Toc55981586][bookmark: _Toc55981684]Tip – using the Customize keyboard dialog
[bookmark: _Toc55981587][bookmark: _Toc55981685]This dialogue box is also useful where
a.	you can’t remember which keystroke you have used for a given macro
b.	you can’t remember the macro name for a keystroke that you already use.

For (b), just click in the ‘Press new shortcut key’ box, press the relevant keystroke and look in the ‘Currently assigned to:’ line.
[bookmark: _Toc55977129][bookmark: _Toc164352916]Adding icons (Word 2007/2010)
1.	Right-click on a blank space on the screen’s toolbar. This brings up the Quick Access Toolbar (QAT)
2.	From the QAT, click the ‘Customize Quick Access Toolbar’ menu.
3.	Choose ‘More Commands’.
4.	(In Word 2010 only, you also now need to click on ‘Customize Ribbon’.)
5.	In the ‘Choose Commands From’ list, select ‘Macros’.
6.	Select ‘Normal.NewMacros.<MacroName>’ from the list below.
7.	Click ‘Add’.
8.	The macro will appear at the bottom of the QAT list on the right-hand side.
9.	Click ‘Modify’ (under the QAT list).
10.	Choose a symbol for your macro.
11.	In ‘Display Name’, shorten ‘Normal.NewMacros.MyNewMacro’ down to ‘MacroName’.
12.	Click OK.
13.	Use the up/down arrows on the left of the QAT list to move your MacroName symbol to the desired location on the QAT.
14.	Click OK.
[bookmark: _Toc55977130][bookmark: _Toc164352917]Adding icons (Word 2002/3)
1.	Open the ‘Tools–>Customize’ tab.
2.	Select the ‘Commands’ tab.
3.	In the left-hand list (Categories), select ‘Macros’.
4.	In the right-hand list find ‘Normal.NewMacros.<MacroName>’.
5.	Drag it up to the toolbar.
6.	The cursor will have an ‘x’ in it, but it will turn into a ‘+’ when you are over a bit of the bar where you are permitted to drop it.

If you want to customise the appearance of the macro icon, do the following:
1.	With the ‘Customize’ box open, right-click on your macro.
2.	Click ‘Default Style’.
3.	Right-click again.
4.	Choose either an existing icon from ‘Change Button Image’.
5.	Or create your own button from ‘Edit Button Image’.
[bookmark: _Toc55977131][bookmark: _Toc164352918]Updating macros
If you have a macro that you are already using, and you hear that there’s a more up-to-date version, how do you make the upgrade? The important thing to remember is not to delete the whole of the macro, from

Sub Something()
to
End Sub

If you just delete the old version of the macro, the associated icon and/or keystroke will be lost and you will have to set it up again.

Instead, just delete the ‘meat’ of the macro, leaving the Sub and End Sub lines, for example:

Sub ProperNounAlyse()

End Sub

Then copy the ‘meat’ of the new macro, i.e. not the Sub and End Sub lines, and paste it in the space that you have left for it. (Don’t worry about there being extra blank lines – they are totally irrelevant to the working of the macro.)

[bookmark: _Toc55977132][bookmark: _Toc164352919][bookmark: _Hlk44839082][bookmark: _Hlk107053385]What happens when things go wrong?
(Video: youtu.be/AY6B-IkLEN8)

I’ll give you a general description of what to do to report an error to me, and then I’ll list a few errors that sometimes occur, giving you a suggestion of the possible cause. Oh, but first...

[bookmark: _Toc55981588][bookmark: _Toc55981686]A general suggestion
If you get errors with some of the macros – especially all the ...Alyse macros – it may be worth creating a text-only version of your file and then running the macro on that copy.

One way is to use:

Ctrl-A, Ctrl-C, create a new file, Paste as Pure Text

[bookmark: _Hlk37864812][bookmark: _Hlk37865026]but to be sure that you’re getting all the text – including what’s in the foot/endnotes and text boxes – you can use the macro CopyTextSimple. (Better still, especially for large files, use CopyTextVerySimple.)

“Word has crashed!” – but has it?
There are times when Word seems to have crashed – but it might not have. Just because it claims that it’s “Not responding” it doesn’t mean that it has crashed. Try to be patient – go and make a cup of tea, perhaps, especially if you realise that you had omitted to save the file (bad idea!) before you ran that macro.

But if it still seems to have crashed (e.g. the red ‘X’ box at the top right of the Word window is only glowing dull red), you might still be able to regain control of Word (and thus to save that unsaved file!).

One trick you can try (on PCs only, sorry, unless Mac users can tell us your equivalent action) is to open the Windows Task Manager by pressing Ctrl-Alt-Delete. The Task Manager display will show you whether Word is still active. Whether it is or not, do NOT click on End Task. Click Cancel, and then either you will be able to click in the Word window and you’ll have control back, or you’ll have to click the dull red close box, and Word will do its best to save your unsaved file(s).

[bookmark: _Toc55981589][bookmark: _Toc55981687]How to respond to – and tell us about – an error
Sometimes, when you try to run a macro, it generates an error, and Visual Basic (VBA) asks you what you want to do, offering you:

	End, Debug, Help.

Ironically, the least helpful of these is to click ‘Help’. Don’t bother.

If you just want to give up altogether and ignore the idea of using that macro, you can click on End.

To find out what went wrong – perhaps so that you can report the error to WMT – the first thing to do is to make a note of how VBA describes the error. Here’s an example:

	Runtime error ‘5174’:
	This file could not be found.

MS Word won’t let you copy and paste the error message, but you could perhaps go over to your email software or to a text editor, such as NotePad, and start to compose an email to WMT, typing in this error message.

Next, click on Debug. Debugging is a technique that programmers use to try to work out what has gone wrong with a program. This will take you into VBA with one of the lines of the macro highlighted in yellow, maybe looking something like this:

	If gottaList = False Then
	 Documents.Open dirName & listName
	Else
	 listDoc.Activate
	End If

Make a note of the line so that you can report it to us. However, this time, you can do it by selecting a bit of the macro, either side of the yellow line, copying it, and then pasting it into a Word file (or your email), where it will appear as ordinary text. But please explain exactly which line was actually highlighted in yellow – this is important if you want us to correct the problem.

Next, you have to stop the debugging process, or ‘reset’ VBA. You do this by clicking the Reset button on VBA’s top tool bar. Look for the set of three icons – as on an AV device: Play, Pause and Stop. The ‘Reset’ button is the square block, as used for ‘Stop’ on an AV player.

Send us that information, and we’ll see what we can work out.

(If you don’t stop the debugging process and simply go back into Word, all will seem to be OK. However, when you later try to run another macro, it will generate the error: ‘Can’t execute in break mode’. You then have to click ‘OK’, select the VBA window and click the ‘Reset’ icon, as mentioned above.)

[bookmark: _Toc55981590][bookmark: _Toc55981688]Some possible errors and their possible causes
“Can’t execute in break mode” – (Probably the most common error!) What has happened is that a macro has gone wrong, and you have been offered, “End, Debug, Help”, and you’ve clicked Debug. This means that, actually, this macro is still trying to run, but is temporarily paused: VBA is in ‘Break’ mode.

If you go back into Word’s main window and try to rerun this macro – or indeed run any other macro – you’ll get this error again, and again, and again. The solution is to go into VBA and click the Run tab, then select Reset. Or you can just click on the square icon, like a DVD stop button – ■ – just below the Run tab.

“Variable not defined” – Search in VBA amongst your macros, and see if there’s a line saying Option Explicit. If so, put an apostrophe in front of it, to disable it. This won’t harm the operation of any of the other macros.

“The Find What text contains a Pattern Match expression which is not valid.” – There are various reasons for this. In general, just report it to me, as above.

However, if you’re using any of the XyzAlyse macros, such as DocAlyse, then it’s likely to be a problem with what’s called the ‘list separator’ used in the operating system of your computer. This is especially likely if you’ve got a computer set up for mainland Europe or South Africa. Here are my standard instructions:

The ‘list separator’ used within Word needs to be a comma, not a semicolon.

However, this is not a Word option, rather it’s an operating system option.

So, on Windows 7, 8.1 and 10, it is in the Control Panel under ‘Clock Language and Region’ and then ‘Region’ and then ‘Additional settings’ (which is a button near the bottom of the Region window). In ‘Additional settings’, the fourth from the bottom is ‘List separator’. Change it to a comma and click OK.

(If the above instructions don’t relate to your computer, please email us and we’ll try to help; that way we can add to these instructions, then other people won’t suffer the setback you just had. Thanks.)

[bookmark: _Hlk38691371][bookmark: _Hlk38690309]“Compile error: ambiguous name detected: BlahBlah” (where ‘BlahBlah’ is the name of a macro) – This means that, in pasting an extra macro into VBA, you’ve ended up with two copies of the macro BlahBlah. So the solution is to delete one of them. How? You do it in Visual Basic, and you do it very carefully, making sure to delete a whole macro from ‘Sub’ to ‘End Sub’, inclusive.

Note: You can select a whole macro automatically, by double-clicking. However, you need to know where to double click: you do so in the 2 mm-wide white margin, between the actual words of the macro and the light-grey vertical strip that looks like (but isn’t) a vertical scroll bar (which is the vertical bar on the right, as with all application windows).

“User-defined type not defined” – If you get this error message, try the following: go into Visual Basic and click on: Tools – References.

It should look something like this:

[image:]

In particular, check that you’ve got both Microsoft Scripting Runtime and Microsoft Forms 2.0 Object Library. Or maybe others are missing from the list of ticked items?

If not, look down through the list of unticked items and see if you can find either or both of them. If so, tick them, click OK, close VBA and then [b]close and re-open Word[/b].

Does that do the trick? (If not, try a complete restart of the computer.)

“Compile error: procedure too long” – This normally only occurs if you’re trying to use DocAlyse. And only on a Mac. So if you get this error, try using the macro, DocAlyseForMac. If even that gives the same error, there is a solution: try DocAlyseForThinMacs and if that fails, there’s finally a DocAlyseForVeryThinMacs.

Problems with losing or gaining spaces – If when you run a macro you and uop with words joinedtogether or extra spaces appearing (as per the previousbit of this sentence) then the culprit might be Word’s ‘helpful’ Smart Cut and Paste option. PC users can look in my Appendix 9 Word 365 Options, and search for ‘My advice: switch this off!’, where there are four options that I think are (a) unnecessary and unhelpful for an editor and (b) in some circumstances cause macros to malfunction.

For Mac users, here are some instructions for removing the worst of the four (Smart Cut and Paste):

1. Click on ‘Word’ in the upper left of your Word window.
2. From the drop-down menu, click on Preferences.
3. A new window will appear. Click on Edit in the Authoring and Proofing Tools section.
[bookmark: _Hlk98325214][bookmark: _Toc55977133]4. In the new window, uncheck Use smart cut and paste.

“My macros are visible with View–Macros, but if I try to run one, it says they are not accessible.”
(June 2023) I’ve had three people with the exact same problem in the past 3/4 weeks!

The first person solved it by reinstalling Word from scratch, but thankfully, I now know that’s not necessary.
If you know where your Templates folder is (if not, please read my Appendix 12, so you can quickly backup your normal template – better still watch https://youtu.be/b9I2ZEzdvAc), then...

1) Close Word
2) Rename your “Normal” to, say, “NormalOLD”
3) Restart Word

You won’t have any macros, and will need to reinstall them from scratch (unless you have been following my procedure in Appendix 12, and have an earlier backup to use) and add your keystroke allocations again.
Please make life easier for yourself:

https://www.wordmacrotools.com/pdfs/Appendix_12__Backing_up_the_Normal_Template.pdf

[bookmark: _Toc164352920]03 A conceptual approach to editing ____
[bookmark: _Hlk93563106]It can be very helpful to think conceptually about what we do when we’re editing a document: presumably our aim is to enable the document to more effectively communicate the ideas, feelings, etc. of the author to the reader(s), but how do we do that?

At one level you could see it as consisting of three tasks:

• Assessing what the document needs
• Reading through the text
• Making changes to the text

I’ve deliberately used bullets rather than a numbered list as it’s not meant to be an order of events. For example, you obviously assess the job before you start reading, but as you actually read the text some aspects of your assessment might change in the light of your growing knowledge and understanding of the script.

Similarly, while a lot of changes can only be made as part of the reading process (i.e. at sentence level), it might be possible to make some changes before you start that focused reading. At its simplest, you might decide to globally change double spaces into singles.

How/why do you assess the script?
The better you can understand the nature of, and problems in, the script before you start reading, the quicker you’ll be able to complete the edit (this is also true for proofreading). Therefore, computer tools that offer analysis of the text can be a great time-saver, and can also help you in setting up your stylesheet. (Examples include HyphenAlyse, ProperNounAlyse, DocAlyse and SpellAlyse.)

What do you want to change?
This might be an over-simplification but the changes you make can be thought of as (a) to increase consistency (let’s include correcting the grammar as ‘consistency’), and (b) to improve the meaning/expression.

How/when do you make changes?
Conceptually, I think of changes as being of three types – again with bullets, as this is not a batting order.

• global – at it simplest this might be removing all doubles spaces or globally correcting known spelling errors, but it might also include, say, adding a terminal full stop to every figure/table caption. Focus: removing inconsistencies

• selective – by this I mean searching through the text for each occurrence of ‘something’, and deciding whether or not to make a change according to the context. The obvious example is Word’s own find and replace, where you can click ‘Replace’ or ‘Find Next’, but PerfectIt also offers this sort of selective editing, as do a whole range of different macros. Focus: removing inconsistencies

• sentence level – this is when you actually read through the text and make changes, while you focus on the way the sentence communicates. Focus: mainly on meaning, but also removing inconsistencies, and checking that any global changes already made are correct

Which types of change are best?
Changes for meaning can only be done at sentence level, but the more inconsistencies you can clear up before reading, the better you can concentrate on the meaning (which for me is the really fun bit, anyway). Global changes can be done much more quickly than selective changes, because you’re not having to read the context of each, but there’s more chance of false positives. For example, if you unwisely try to globally add a full stop to ‘etc’, you could end up with ‘Please fetc.h the ketc.hup!’

Play safe, but build experience
It’s up to each individual to decide how ‘risk averse’ you are: how many global changes you are willing to make to increase your speed, at the risk of making the occasional bad choice and having to revert some of the changes.

My personal advice would be that, in using macros such as FRedit,[footnoteRef:1] on the first couple of jobs just use a few obviously safe changes, but then, as you gain confidence, harvest more adventurous F&Rs from the FRedit library (comes with the FRedit package) and thereby increase your expertise – and your speed. [1: FRedit is a scripted global find-and-replace macro: you give it a list of F&Rs, and it does them all globally, one after the other (similar to Jack Lyon’s MegaReplacer).]

Play safe – mark the changes
Obviously, you don’t need to mark the fact that you’ve removed all the double spaces, but for most global changes, it’s wise to mark them in some way so that, as you read, you will know that a given item has been globally changed.

The other important global ‘change’ you can make is simply to mark items without actually changing them. The idea is that your analysis will likely show you some aspects of the text that may need changing, depending on the context, so those can be globally marked to draw them to your attention as you read.

If changes are being tracked then that is sufficient ‘marking’, but marking just as an indicator to you as you read (not to the client, later) can be done in a number of ways. Highlighting is perhaps the most obvious, but many editors find these colours too distracting as they read, and they prefer the more subtle technique of font colouring; and you can use different colours, maybe to distinguish between changes made and items to be checked.

Many tools allow you to choose whether to use tracking, highlighting, colouring etc. For example, FRedit, allows you to decide, for each individual F&R, whether to track it and/or colour and/or highlight the changes made.

Highly INadvisable – in my view
One thing I never do is to use any global changes after I have finished my read-through of all or part of the text in a file. The problem is that they might change something within the area of the text that I’ve already read – but maybe I’m over-cautious. The other problem is that global F&R can sometimes trip over previously tracked text.

Edit books per chapter
If you edit books then for the greatest speed gain it’s best to only edit one chapter at a time. You can first run MultiFileText, which creates one single file from all the constituent files, and then you can run the analyses on that all-the-text file.

Then, having prepared an F&R list for FRedit, you can run these global changes on the first chapter, read it, and then add to, subtract from or modify any of the items in your changes list. Chapter by chapter you will then be making more of the changes globally, leaving fewer things to be changed at sentence level. Not only does this increase your speed but, with fewer consistency corrections to make, you can concentrate better on each sentence.

[bookmark: _Toc164352921]04 Favourite tools of editors and proofreaders ____
(Possibly useful video: youtu.be/MN3ceX3J9rg)

First editors...
Here’s a list of a dozen or so of the most productive tools according to various editors; these are the macro tools that people feel will save you the most time as an editor and enable you to produce a better quality of work. However, all editors work in different ways, so there may be other different tools that you find more useful than these. The aim of this list is just to give you a feel of the sort of macros that are available.

1) FRedit is the biggest timesaver. Unfortunately, it uses a concept that is new to many editors: scripted find and replace. It sounds complicated, but it isn’t. However, within this book I have only provided a brief introduction to the concept, because FRedit has its own set of instructions, plus a library of tools for you to use for a range of different jobs. (www.archivepub.co.uk/documents/FRedit.zip)

2) HyphenAlyse and DocAlyse give me valuable information to help me to prepare my stylesheet for a job. They tell me what conventions the author has used (more or less consistently). This information helps me to decide what conventions to use for punctuation and spelling etc. Because I do this before I start reading, it saves me a lot of time.

3) SpellAlyse produces an alphabetic list of all the different words in the document that Word’s spelling checker thinks are spelling errors. You can decide which are or are not spelling errors. You can then use SpellingErrorHighlighter to highlight some of the words for your attention as you edit, or it can change the spelling errors for you automatically.

If I also run ProperNounAlyse, the computer will produce a list of pairs of proper nouns that look as if they might be variant spellings of one another, e.g. Beverly/Beverley.

4) IStoIZ and IZtoIS change and/or highlight all the words in a file that need switching to whichever convention your client wants. (This is only applies to English language documents.)

5) Highlighting macros – There are several macros for applying highlights of different colours, (selectively) removing highlights, and searching for text that is highlighted in different colours.

6) InstantFindDown(Up) – If you want to look at the previous or next occurrence of a word or phrase, InstantFind will take you straight to it – with one single click. The macro also loads this word/phrase into the Find box, so that you can use Word’s own Ctrl-PageUp and Ctrl-PageDown to go through the various occurrences of this text. And the other very powerful find macro (FindSamePlace) is where you want to compare the text in two documents. You select some text in one document, and the macro switches to the other file, goes up to the top of the document and finds the first occurrence of this text.

7) Text editing macros – This refers to macros for various text editing actions, as you actually read the text. For example, one macro will change the next number from numerals into words (and another one changes words to numerals). There are dozens of the text editing macros, so decide which editing actions you use most often, and find a macro for each of them. You’ll find them in the section: ‘Editing: Text Change’.

8) Scripted word switching – MultiSwitch, WordSwitch and CharacterSwitch are three very powerful and, more importantly, flexible ways of editing the text. I won’t bother explaining here; just have a look at the three sections following the heading: ‘Common Word/Phrase Switch’.

9) CitationAlyse – With this macro, I first create a list of all the citations of references that occur in the text, and then I pair up the citations with the references within the list. I can then see if there are any citations that don’t have a corresponding reference in the list, or any references in the list that are not cited in the text. (Often the reference/citation is there, but there’s a spelling error or a mistake in the date etc.)

10) CommentAddMenu and CommentCopier – Select some text, and CommentAdd copies it, creates a new comment for an author query, adds ‘AQ:’ and pastes the text inside quotes, ready for you to type in your query. Or CommentAddMenu does the same sort of thing, but offers you a menu of different standard comments you might want to use (you can obviously edit this menu of comments according to your own style). Then CommentCopier copies all the comments in the file, puts them into a separate file and adds an ‘Answer:’ line in between each query and the next, ready for the author to type in a response. It also creates a ‘Context’ file, a compilation of all paragraphs that contain one or more comments.

[bookmark: _Hlk102142709]11) WhatChar – For example, you come to something that looks like a degree symbol, but you suspect that it might not be. WhatChar checks the ANSI code (a degree is 176), but it also spells out in words what the character actually is. So, for example, it tells you what each of the following, highly confusable, characters (printed here in Century Gothic, to illustrate the problem) are: l|I1°º. They are: lowercase letter-L, vertical bar, uppercase letter-I and the number one, then a proper degree symbol, a masculine ordinal (as used in Nº) and a superscripted lowercase letter-O.

12) CountPhrase allows you to select a word or phrase and it tells you how often this occurs in the text. This helps you to maintain consistency because, for example, you can very quickly check if something is spelt in either of two variant ways. But it also does both case-sensitive and case-insensitive counts, so you can see if it is capitalised differently in different parts of the document. (Also, the macro, HyphenSpaceWordCount, counts the number of occurrences of, say, cow-bell, cowbell and cow bell.)

Then proofreaders
‘But I’m not an editor – I just do proofreading’, you say. Nevertheless, you too can gain both speed and consistency through the use of certain of the macros in this book. Personally, I would never accept a proofreading job without also being given the text in electronic format (most commonly in PDF format).

To gain advantage from macros, you first need to copy and paste the text out of the PDF file(s) and into Word or with modern versions of Word, you can simply ‘open’ the PDF as if it were a Word file. You can, of course, search for things in PDF files, but once the text is in a Word file, you can use the following macros:

1) HyphenAlyse and DocAlyse give me valuable information to help me to prepare my stylesheet for a job. They tell me what conventions the author has used (more or less consistently). This information helps me to decide what conventions to use for punctuation and spelling etc. Because I do this before I start reading, it saves me a lot of time.

2) SpellAlyse produces an alphabetic list of all the different words in the document that Word’s spelling checker thinks are spelling errors. You can decide which are or are not spelling errors. You can then use SpellingErrorHighlighter to highlight some of the words for your attention as you edit, or it can change the spelling errors for you automatically.

If I also run ProperNounAlyse, the computer will produce a list of pairs of proper nouns that look as if they might be variant spellings of one another, e.g. Beverly/Beverley.

Also, I can run WordPairAlyse to spot, say, cow bell/cowbell, which wouldn’t be spotted if the text didn’t also have ‘cow-bell’.

3) IStoIZ and IZtoIS changes and/or highlights all the words in a file that need switching to whichever convention your client wants. (This is only applies to English language documents.)

4) WhatChar – For example, you come to something that looks like a degree symbol, but you suspect that it might not be. WhatChar checks the ANSI code (a degree is 176), but it also spells out in words what the character actually is. So, for example, it tells you what each of the following, highly confusable, characters (printed here in Century Gothic, to illustrate the problem) are: l|I1°º. They are: lowercase letter-L, vertical bar, uppercase letter-I and the number one, then a proper degree symbol, a masculine ordinal (as used in Nº) and a superscripted lowercase letter-O.

5) CountPhrase allows you to select a word or phrase and it tells you how often this occurs in the text. This helps you to maintain consistency because, for example, you can very quickly check if something is spelt in either of two variant ways. But it also does both case-sensitive and case-insensitive counts, so you can see if it is capitalised differently in different parts of the document. (Also, the macro, HyphenSpaceWordCount, counts the number of occurrences of, say, cow-bell, cowbell and cow bell.)

6) InstantFindDown(Up) – If you want to look at the previous or next occurrence of a word or phrase, InstantFind will take you straight to it – with one single click. The macro also loads this word/phrase into the Find box, so that you can use Word’s own Ctrl-PageUp and Ctrl-PageDown to go through the various occurrences of this text.

7) CitationAlyse – With this macro, I first create a list of all the citations of references that occur in the text, and then I pair up the citations with the references within the list. I can then see if there are any citations that don’t have a corresponding reference in the list, or any references in the list that are not cited in the text. (Often the reference/citation is there, but there’s a spelling error or a mistake in the date etc.)

[bookmark: _Toc164352922]05 Proofreading a book – a possible workflow ____
Here’s what I do as I start a new book job, if I’m proofreading – I’ve recorded it here just as a suggestion as to what I find useful.

	Action
	Result

	Read the brief and/or style guide (if provided) and fill in as much as possible of the stylesheet
	Some items decided on stylesheet (see Appendix 7)

	If the book is in separate files, create an AllWords file using MultiFileText
	All the words (inc. footnotes and text from textboxes), but no images, in one file

	Run DocAlyse
	Stylesheet with more decisions, including some items in the word list, e.g. co(-)operate, learn(t/ed) etc

	If no decision on UK/US English, run UKUScount
	The numbers of UK and US English words, and hence a language decision

	If no decision on is/iz, run IZIScount
	The numbers of -is- and -iz- words used, and hence an is/iz decision

	Run SpellAlyse and SpellingErrorHighlighter
	Actual spelling errors highlighted; or a list of spelling errors and corrected words for use with FRedit

	Run HyphenAlyse (and also WordPairAlyse)
	Frequencies of all hyphenated words and of all words with certain prefixes (anti-, non-, post-, pre- etc)

	Run ProperNounAlyse
	A list of possibly misspelt proper nouns, including frequencies

	For academic jobs, run CitationAlyse
	List of referencing problems

[bookmark: _Toc164352923]06 Book editing – a possible workflow ____
(See also video: Book editing using macros (13:53): youtu.be/WSfXidPGC1A)

Here’s what I do as I start a new book job, if I’m editing. This is clearly a lot more complicated and detailed. I keep trying to refine this ‘recipe’ each time I edit a job, but it’s far from perfect.

	Action
	Result

	Read the brief and/or style guide (if provided) and fill in as much as possible of the stylesheet
	Some items decided on stylesheet (see Appendix 7)

	If the book is in separate files, create an AllWords file using MultiFileText
	All the words (inc. footnotes and text from textboxes), but no images, in one file

	Run DocAlyse
	Stylesheet with more decisions, including some items in the word list, e.g. co(-)operate, learn(t/ed) etc

	If no decision on UK/US English, run UKUScount
	The numbers of UK and US English words, and hence a language decision

	If no decision on is/iz, run IZIScount
	The numbers of -is- and -iz- words used, and hence an is/iz decision

	Run SpellAlyse
	List of apparent spelling errors

	Read through spelling error list and use SpellingSuggest to add alternates, e.g. mesage|message, but colour or highlight words that need checking when I do the actual read through
Copy and paste any ‘suspect items’ in the proper noun section of the error list into a separate document for later use, e.g.
Macmullan
MacMullan
	Spelling errors needing to be changed

Spelling queries to be highlighted

List of a few possible proper noun errors

	Copy spelling error list to the end of the FRedit list and run FReditListProcess once with words in the spelling error list (any case) and once with proper nouns (case sensitive)
	FRedit items for spelling

	Run HyphenAlyse (and also WordPairAlyse)
	Frequencies of all hyphenated words and of all words with certain prefixes (anti-, non-, post-, pre- etc)

	[bookmark: OLE_LINK1]Use HyphenationToFRedit to add items to the FRedit list that will correct hyphenation (and remember to record hyphenation decisions in the Words List at the end of the style sheet)

	FRedit items to correct hyphenation

Updated Words List

	Run ProperNounAlyse
	A list of possibly mis-spelt proper nouns, including frequencies

	Use ProperNounToFRedit or HyphenationToFRedit to create items for the FRedit list

	Items for the FRedit to correect mis-spelt proper nouns

	Check through proper noun list and try to resolve any conflicts with names of different spelling, using InstantFindUp or FindSamePlace to jump around and look at the context, and/or GoogleFetch to check names on the internet
	Items added to FRedit list to correct (or highlight, if not sure) proper noun errors

	If not sure on some names, query with author and get them correct, and only then...
	More items for FRedit list

	For academic jobs, run CitationAlyse to check the references and...
	List of referencing issues to check via the internet or query with the author

	...use AuthorDateFormatter to sort formatting of names, initials and dates
	Improved formatting of references list

[bookmark: _Toc164352924]07 Tools for different aspects of editing ____
There are very many different things that macros can do, so I have divided them up into sections to try to make it easier for you to find the macro(s) that you want for any given job.

Textual analysis – preparing your stylesheet
There are only a few macros under this heading, but they are some of the most powerful, for both proofreaders and editors. Their purpose is to help you to assess the script before starting work on it. The aim is to help you make decisions about spelling, hyphenation, punctuation styles etc before you start to read. This can save you a lot of time. (Editors may like to run some of these macros again on the finished files to pick up any remaining inconsistencies.)

Pre-editing tools
If you are editing a text, there can be a lot of changes to be made to the file before you actually start reading, and many of these involve repetitive tasks – just the sort of thing that computers are good at. The most powerful tool here, FRedit, provides ‘scripted find and replace’, a concept that is new to some editors, for which there’s only a brief introduction in this book. FRedit has its own, separate documentation. This macro can be very useful even if is used very simply, but it can also do some extremely time-saving tasks if you are willing to learn to use its more powerful aspects. The FRedit package comes with a library of tools that other people have developed. This is especially helpful because many of these special tools use wildcard find and replace.

Other macros in this section do various editing jobs on: tables, frames, textboxes, footnotes and endnotes, bookmarks, comments and styles. For example, there are macros that pull all the tables and/or figures out into a separate file, and a macro that creates a list of all the acronyms in a file etc, etc.

Editing: text change
As you are reading through the text, you do lots of minor editing actions: adding a comma, hyphenating two words, switching the order of two words, changing numerals 1–9 (or 10) into words etc. Using these macros can speed up the editing process but, more importantly, they enable you to make those minor changes without taking your attention off the meaning of the text that you are reading.

Editing: information
These macros provide useful bits of information about the piece of text you are working on.

Editing: highlighting
Coloured highlighting can provide another set of tools to aid the editor: you (or a macro) can use different colours to highlight different things. These macros allow you to add highlights of whatever colour, and then to move around the text, looking at the text in the different colours. Also, you can get rid of the highlighting, either in a given area of text, or selectively by colour; you can remove, say, all the green highlighting while leaving all the rest of the highlighting intact.

Editing: navigation
When working with text, you want to be able to move around the text, quickly and easily, looking at various bits, checking them and changing them. So, by using macros, you can jump instantly to, say, another heading of the same type, to another occurrence of the selected text, to another comment, to the same place in a different file – plus a whole load of other ways of jumping around the text.

Editing: comment handling
Word’s comment facility can be useful for making notes for yourself or others, and macros can help with adding comments. It can also collate the comments afterwards to pass on to the author or the typesetter or the client – especially useful if it’s a multifile job.

Other tools
This final section is just a miscellany of macros – ones that didn’t fit into any other category.
[bookmark: _Toc441501395]
[bookmark: _Toc164352925]08 Macro Menu – complete macro tool list ____
Word version for easier searching: Click here. (Then check your browser’s downloads.)

(The macros highlighted in yellow are the 50 most recently dated – either added or updated.)

The aim of this section is to whet your appetite by offering a macro smorgasbord. The problem with this book is that there are far too many macros, so how do you know what’s available that you might find useful for your own particular style of editing? Here I take different topics and simply state what’s available related to that topic (i.e. some macros appear in multiple sections below). If something catches your fancy, place your cursor in the macro name (in italic) and InstantFindDown to search for the details.

Loads of extra (undocumented) macros
I have a huge range of macros that I have never got round to adding to this book. I have therefore added them to the ends of the sections of the menu below. However, the only information available is the single-line descriptor that every one of my macros has – there are no written instructions... not yet.

But each has a linked macro name, so that you can download the macro from the WMT website.

If you find a macro that looks really useful, please email me, and I’ll see if I can get it written up and put in the book properly.

Hint: Notice that each of the new macros has a date – some go back to 2012. The chances are that the more recent macros are (a) better programmed and (b) likely to be more useful. Enjoy!

[bookmark: _Hlk142129270]
[bookmark: _Toc55981599][bookmark: _Toc55981697][bookmark: _Hlk104800023][bookmark: _Hlk104190526][bookmark: _Hlk120707400]1. Bookmarks
DeleteAllBookmarks – Deletes all bookmarks
BookmarkTempAdd – Adds temporary marker
BookmarkTempClear – Deletes temporary markers
BookmarkToCursorSelect – Selects from temporary marker to cursor
BookmarkTempFind – Jumps to temporary marker

[bookmark: _Toc55981600][bookmark: _Toc55981698]2. Comments
CommentAdd – Adds a comment
CommentAdd2 – Adds a comment
CommentAddMenu – Adds a comment off a menu
CommentAdder – Adds a comment off a menu
CommentAddSimple – Adds a new comment with a standard text item added
CommentAddFromFile – Adds a comment from a file of ready-made comments
CommentAddAndPasteSelected [22.10.22] – Copies text, adds a comment and pastes text
CommentAddJumpBack [26.02.24] – Creates a comment or jumps back to the text
CommentSuggestText [26.02.24] – Copies selected text to make a comment (Same as the one above?!)

Modern comments system:
CommentCompose – Allows you to create a new (modern) comment
CommentComposeMenu – Adds a comment off a menu (for modern comments only)
QQConvert [14.06.21] – Converts QQ comments to ordinary comments
QQUpdate [28.05.21] – Renumbers QQ comments

CommentsModernCollect – Extracts modern comments with format and colouring
CommentsModernDelete – Deletes current comment or all comments

CommentPicker – (similar but for PDFs) Copies a comment out of a list of comments
CommentPickerInserter – (ditto) Copies a comment from a list and paste into text
CommentCopier – Creates an author query list, with space for author’s reply, plus a file of each comment’s context
CopyAllComments – Copies all the comments into a new document
CopyCommentsAndSave – Create a list of all the comments
CommentCollectTabulated – Collects all comments into a table
MultiFileCommentTabulated [28.04.22] – Collects all comments in a set of files into one big table

CommentListNumbered – Lists all comments in file with index numbers
CommentNumbering – Adds or removes comment initials and numbers, e.g. [PB1]
AddCommentMarkersInText – Adds comment initials and numbers to text
CommentInitialFandR – Finds and replaces comment initials
CommentInitialReplaceAll – Changes all comment initials
CommentContextCopier – Copies all paragraphs containing comments into a new file
MultiFileComment – Lists all comments in a set of files

CommentNext – Jumps to next comment
CommentPrevious – Jumps to previous comment

CommentsPane – Opens and closes the comments pane
CommentJumpInOut – Jumps into and out of comment text
CommentChangeScope – Reduces or extends the scope of a comment
CommentNameChanger – Changes the name attached to comments

CommentTextNormalise – Gets rid of ‘funny effects’ in the comment boxes

DeleteAllComments – Deletes all comments
DeleteCommentsSelectively – Accepts track changes of specific author/editor
CommentsResolveSelected [19.09.23] – Resolves all the comments in the selected area of text

CommentBracketsToBubbles – Copies text in square brackets and into comment bubbles
CommentBubblesToBrackets – Copies comments into brackets in running text

CommentsAddIndexOnInitials – Adds serial number to initials in all comments
CommentsDeleteAllNotTagged – Deletes all comments NOT starting with a specific tag
CommentsDeleteSelectively – Deletes all comments that DO have a specific tag
CommentDeleteMoveNext [17.05.22] – Deletes current comment and moves to the next comment

SectionHeadsInComments [26.02.24] – Adds the heading style and text of each heading into a comment
HighlightComments [16.11.22] – Highlights all comments with specific prefix

[bookmark: _Toc55981601][bookmark: _Toc55981699]3. Document analysis
MegAlyse – Launches a selected series of analysis macros
UKUScount – Has the author predominantly used UK or US spelling?
UKUShighlight – Marks US spellings within UK text and vice versa
IZIScount – For UK spelling, has the author predominantly used -is- or -iz- spellings?
	(For editing, you can use IStoIZ and IZtoIS to implement your decision.)
ProperNounAlyse – Alerts you to possible proper noun misspellings, showing their frequency
	(For editing, ProperNounToFRedit can be useful.)
FullNameAlyse – Creates a frequency list of all full names, e.g. Joe Bloggs, K Smith, Paul Edward Beverley
PreferredSpellingsAlyse – Finds words similar to those in a preferred-spelling list
SpecialWordSpellAlyse – Does a ProperNounAlyse of all long ‘spelling error’ words
SimilarWordsAlyse – Analyses similar words
HyphenAlyse – Shows the frequency of word pairs in hyphenated, two-word and single-word form
	(For editing, HyphenationToFRedit can be useful.)
HyphenationToStylesheet – Takes items from the HyphenAlyse list, ready for the word list of a stylesheet
WordPairAlyse – Shows the frequency of word pairs that are never hyphenated (e.g. can not/cannot)
CapitAlyse – Analyses words with initial capitals (or not)
AccentAlyse – Compares words that consist of the same letters, but with different accents
AccentedWordCollector – Collects all the accented words in a text
AAnAlyse – Highlights a/an errors: a onion, an pear, an union, a hour, a HTML, an UFO, a O, an P, a H, an U
DocAlyse – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
DocAlyseUser – Create your own (multilingual?) document analyses
DocAlyseForMac – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
DocAlyseForThinMac – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
DocAlyseForVeryThinMac – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
SimilarWordsAlyse – Analyses similar words
PreferredSpellingsAlyse – Finds words similar to those in a preferred-spelling list
GenusSpeciesAlyse – Checks the abbreviation of genus/species names
SpeciesAbbreviator [12.03.22] – Adds genus and species to the text, pulling data off a file

NumberTextFigureCount – Counts numbers as figures vs. words
e– Highlights things that might be lists with serial commas (or not)
CenturyAlyse – Analyses how centuries are formatted in a document
DayDateAlyse – Lists words out of a proper noun frequency list
ListAlyse – Makes a list of all the ‘list’ items - then you can analyse them!
FormatAlyse – Highlights various formatting features to make you aware what’s been used
PlurAlyse – Creates a frequency list of single/plural pairs
PlurAlyseColour – Colours/highlights all words listed by PlurAlyse
ChicagoNoteReferenceAlyse [31.12.21] – Helps to check note-based reference citations
InitialCapAlyse [17.09.18] – Highlight possible capitalisation inconsistency
ParticipleSentenceStartShow [04.01.24] – Underlines + highlights the participles that start sentences
UnitsAlyse [07.03.22] – Counts the number of items that look like units

StyleEffectDetector – Reports the style and effects applied to the text
CatchPhrase – Searches for and counts repeated phrases
DuplicateSentenceCount – Counts frequency of any duplicated sentences
WordGraph – Gives a visual indication of the occurrences of a word or phrase

PunctuationFormatChecker – Variously highlights italic/roman punctuation
HighlightOddPunctuationFormat – Highlights oddly formatted punctuation marks
RomanPunctuationHighlight – Finds roman punctuation that follows italic text
WhatChar – Shows ASCII and Unicode numbers and names of character at the cursor
Chirimbolos – WhatChar in Spanish by Marcela Ronaina

SerialCommaHighlight – Highlights or underline text that appears to have a serial comma
SerialNotCommaHighlight – Highlights or underlines text that appears not to have a serial comma
SerialCommaCounter – Counts serial (or not) commas in lists
SpecialSortsLister – Creates a list of all the special sorts in a file
SpecialCharList – Creates a list of the Unicode characters in the document
TextProbe – Finds funny character codes
FieldAlyse – Counts all fields of different types

SentenceAlyse – Analyses the size of sentences
ItalicWordList – Creates a list of all words in italic
ListofHeadings – Creates a list of all headings
ListAllHeadings – Creates a list of all headings by style name
HeadingLister [11.01.14] – Create a list of all coded headings
StyleDetector – Displays or speaks the current style name
FontColourReader – Reads style font colour + any applied colour
PhraseCount – Counts a series of selected phrases
CountPhrase – Counts the word or phrase selected
HyphenSpaceWordCount – Counts hyphenated word forms
ItalicCount – Counts the number of words that are in italic
MultiFileCount – Counts words in a group of files
WordTotaller – Adds up word numbers in selected texts
LongWordHighlighter [09.08.23] – Highlights all words more than a certain length

HighlightLongQuotesDouble – Highlights all extra-long quotes (double)
HighlightLongQuotesSingle – Highlights all extra-long quotes (single)
DisplayQuote – Finds or displays a long quote

HighlightIndentedParas – Highlights all indented paragraphs
HighlightAllQuestions – Highlights all sentences ending with a question mark
LongSentenceHighlighter – Highlights all sentences more than a certain length
LongParagraphHighlighter – Highlights all paragraphs more than a certain length
ParagraphLineLengthHighlighter – Highlights any paragraphs longer than a number of lines
LongSentenceCheck – Colours long sentences
FrequencySentenceLength – Creates a histogram of sentence length
HighlightDuplicateSentences – Highlights pairs of identical sentences within a document

DuplicatedWordsHighlight – Adds a highlight to any duplicate words in a text, e.g. ‘the the’
DuplicatedWordsFind – Jumps to the next duplicated word pair: ‘the the’ and ‘and and’ etc
DuplicatedWordsFind2 – Finds next consecutive two-word duplicate
DuplicatedWordsFind3 – Find next consecutive three-word duplicate
FindRepeatedWords – Finds words that are repeated in a given range
RepeatedWordsInSentences – Highlights any words duplicated within given sentences
RepeatedWordsInParagraphs – Highlights any words duplicated within given paragraphs
MacroRunNoTC – Runs an analysis on track-accepted text
TooDifficultWordHighlighter – Highlights any words not included in a given word list

ChronologyChecker – Copies paragraphs containing date references into a new file

IndexListItems – Finds page numbers of all the words/phrases given in a list

[bookmark: _Toc55981602][bookmark: _Toc55981700]4. Fields
URLlink – Makes the URL/email at the cursor a clickable link
URLlinker – Finds URLs in the text and links them
URLunlinker – Unlinks all the URLs in the selection or the whole file
EmailLinker – Finds email addresses in the text and links themthat
URLshrinker – Reduces the extent of a URL link to just the selected text
UnlinkCitationsAndRefs – Unlinks reference citations (ignoring equations)
DeleteAllLinks – Deletes all hyperlinks
DeleteSomeLinks – Deletes hyperlinks that are not URLs
DeleteAllHyperlinks [30.06.12] – Unlink all hyperlinks including footnotes
UnLinkAllFields [30.10.12] – Unlinks all fields and hyperlinks
UnlinkSomeFields [31.10.12] – Delete hyperlinks that are not URLs
ReferenceCheckWeb – Checks whether each of the URLs in the text appears in the references list
MendeleyPunctuationCorrection – Moves punctuation marks to before the note indicator
FieldsUnlink – Unlinks all fields except equations
CitationFieldsUnlink [27.02.14] – Selective field unlinking

FieldCodesVisible – Switches between fields being visible and not visible
URLlinksVisible [01.05.21] – Unlinks all the URLs in the selection or the whole file

AutoListOff – Changes auto-bulleted listing to real bullets
InsertFigureRefs [21.02.18] – Adds hyperlinked reference to all figures
InsertHeadingRef [18.02.18] – Adds a hyperlinked reference to a heading
InsertTableRefs [21.02.18] – Adds hyperlinked references to all tables
ListAllCitations [28.12.23] – Alphabetically lists all fig/table/box/flowchart citations

LinkCopy [25.01.24] – Copies the URL of the current link
LinkAdd [25.01.24] – Selects the current word(s) and adds a link from your input
LinkDelete [25.01.24] – Deletes (unlinks) the current link

ContentControlsRemove [14.04.21] – Removes all content controls

[bookmark: _Toc55981603][bookmark: _Toc55981701]5. Figures and tables
FigCallouts – Figures call-out inserter
FigStrip – Strips out all figures and leave a callout
DeleteAllFigures – Deletes all images that seem to have a figure caption
DeleteAllInlineImages – Deletes absolutely all images
DeleteAllImagesAndCloseUp – Deletes all images and closes the gaps
DeleteAllImagesAddCallout – Deletes all figures and leaves a callout for each
TableCallouts – Inserts table callout
TableEdit – Edits items in the cells of some or all tables
TableEmDasher – Changes empty cells and cells with hyphen/en dash to an em dash
TableStripper – Strips out all tables into a separate file
TablesToTabText – Converts all tables into tab-separated text
CellsAddChar – Checks that there is a full point ending each cell
TableCellsInitialCaps – Applies an initial capital to every cell in the selected range
TableBordersToggle – Switches table borders and rules on and off
PictureShow – Switches pictures on and off

TablesMarkAllEmptyCells [09.06.22] – Adds some dummy text into every empty cell

[bookmark: _Toc55981604][bookmark: _Toc55981702]6. File handling
MultiFileCopier – Saves a folder full of files into a new folder, adding ‘_PB_01’ to each name
SaveAsWithIndex – Saves the current file, adding a suffix
OpenMySize – Opens the window to a particular size, position and magnification
MultiFileFRedit – Multifile version of FRedit
MultiFilePDF – Saves a folder full of files as PDFs
MultiFileText – Collects text plus simple formatting from multiple files
MultiFileTextForMac – Collects text plus simple formatting from multiple files
MultiFileWord – Concatenates multiple files (i.e. including formatting and images)
ChapterFileLinker – Rejoins all the chapters of a book
MultiFileReferenceCollator – Collects all references (or foot/endnotes) from multiple files
MultiFileShowHiddenText – Unhides hidden text in multiple files
MultiFileCount – Counts words in a group of files
MultiFilePageCount [30.03.21] – Counts pages in a group of files
MultiFileTextSimple [27.06.19] – Collects text plus simple formatting from multiple files
MultifileXML [01.09.21] – Save a folder full of files as XMLs
MultiFileDocToDocxSave [12.05.23] – Save any .doc files in a folder also in .docx format

SaveAllUnsavedDocs [26.10.23] – Saves all unsaved documents

CopyTextSimple – Creates a text-only copy, with some features preserved
CopyTextVerySimple – Creates a text-only copy, with no features preserved

ChapterChopper – Chops text into chapter files
FileChopper – Chops text into a number of smaller file using page breaks
FileLister – Lists all files in a folder

LinesToParagraphs – Converts lots of individual lines of text into paragraphs

TheBook – Loads two named files, and opens them on screen at a given size and zoom
LoadTheseFiles – Loads all the files listed in a file list
LoadFilesInList [20.06.22] – Loads a series of files in a Word file list

BackupIndexed [18.01.21] – Saves an indexed copy of the current file
FolderAddress [15.01.21] – Locates the folder of the current file
WhatFolder [10.02.21] – Loads the clipboard with the address of folder of this file

ChapterChopper – Chops a book file into a set of chapter files
FileChopper – Chops text into a number of smaller file using page breaks

[bookmark: _Toc55981605][bookmark: _Toc55981703]7. Formatting
StrikeSingle – Toggles strikethrough attribute on and off
StrikeAndColour – Adds strikethrough and font colour to selected text
StrikeThroughAllURLs – Strikes through all URLs to protect them from changes
EquationsStrikeThroughAll – Applies strikethrough to all equations in the text
CodeSegmentProtect – Applies strikethrough to computer code sections
EquationsHighlightAll – Highlights all maths items
SpaceEquationsInPara – Adds spaces to MathType equation in this para if necessary
EquationSpacer – Adds spaces either side of equations that butt up to some text
EquationsConvertAll – Converts all Equation Editor items to their text equivalent

CentreText – Centres the text

QuotationMarker – Applies strikethrough to all quotes and displayed text to protect them

FontEliminate – Restores anything in one specific font to the default font
FunnyFontFind – Finds the next paragraph that has mixed fonts
FunnyFontClear – Makes all text in the selection the same font
FontHighlight – Highlights all fonts not named in the list
FontMixHighlight [17.05.21] – Highlights paragraphs with mixed fonts, showing odd fonts
FontMixFind [16.05.21] – Finds the next paragraph that has mixed fonts

FontLister – Lists all font names in selected text or whole file
FontFind – Finds text in a given font name in selected text or whole file
FontFunniesClearThisOne – Makes the selected text into the default font
FontFunniesClearAll – Changes all text in this specific font into the default font
HighlightNotThisSize – Highlights all text NOT the same size as the current text

StyleCopy – Copies style
StylePaste – Pastes style
ListAllStyles [12.01.21] – Creates a list of all paragraph styles name
StyleLister [18.04.24] – Lists all paragraph and character styles used in a document

PasteWithEmphasis – Pastes with emphasis
PasteUnformatted – Pastes unformatted
ClipToText – Gets pure text from PDFs and websites

UnifyFormatBackwards – Makes start of paragraph (or selection) same format as the end
UnifyFormatForwards – Makes end of paragraph (or selection) same format as the start

JustifyOFF – Turns this format off on all paragraphs
FirstNotIndent – Removes first line on all paragraphs that follow a heading

DoubleSpaceAfterSentence – Ensures that every sentence has two spaces after it

FormatRemoveNotURLs – Removes all styles and formatting except URLs

Boldiser – Toggles bold for next character or selected text
Italiciser – Toggles italic for next character or selected text
BoldKill – Remove bold from selected text or current line
ItalicKill – Removes italic from selected text or current line
ItaliciseVariable – Runs along the line to find alpha characters and italicises them all
ItaliciseOneVariable – Runs along, finds groups of alpha chars and and italicises (or italicises a selection)
ItalicisePhrase – Selects text up to next punctuation mark and makes it italic
ItalicBinomial – Italicises biological binomial species names
Romanise – Removes italic from the next set of italic characters
NormaliseText – Sets Normal style and removes (some) formatting
PunctuationItalicOff – Un-italicises all commas, etc. not followed by italic text
PunctuationBoldOff – Un-bolds all commas, etc. not followed by bold text
UnderlineOnlyItalic – Removes all underlining, then underlines all italic text
UnderlineStyle – Changes the underline style of underlined text
BoldItalicToStyle [27.03.24] – Changes bold, italic and bold-italic applied directly, into character styles
FontMixHighlight [17.05.21] – Highlights paragraphs with mixed fonts, showing odd fonts
FontMixFind [16.05.21] – Finds the next paragraph that has mixed fonts

SuperscriptSwitch – Toggles subscript -> superscript
SubscriptSwitch – Toggles superscript -> subscript
SuperscriptSwitchOld – Toggles superscript on/off
SubscriptSwitchOld – Toggles subscript on/off

BoldFirstOccurrence – Emboldens the first occurrence of words in a list
ListItemNumberFormatter – Formats the numbering of the current list item
DisplayedTextFormat – Removes quotes and romanises and trims trailing spaces

ParagraphEndChecker – Highlights the end of all possibly punctuation-less paragraphs

ShowFormatting – Displays all formatting or just paragraph marks
ShowFormattingMenu – Displays (or not) various formatting markers, and the highlighting

BordersAddToText – Changes underlined+highlighted text to coloured borders
BordersAllOff – Removes border attributes from some or all text

ParaSplitJoin – Splits the para after current word or joins to next para

FormatNumbers – Formats number at cursor or numbers within a selection

RemoveNumbersFromHeadings – Removes automatic numbering from headings

SupercriptNumberFormatter – Corrects spaces + punctuation on superscripted numbers
SuperscriptHighlightSmart [25.09.15] – Highlight all superscript numbers according to type
BackgroundColourOnOff – Switches background colour on/off
BackgroundColourOff – Remove background colour
BackgroundColourAllOff – Removes background colour
TrackColourOff [04.09.19] – Switch off background colour from track on/off macro
BackgroundTest [11.04.20] – Removes all background colours
BackgroundPatternStyleChecker [26.01.23] – Searches for text style with background pattern applied
PatternClear [13.03.14] – Remove shading and other funny colours!
ItalicisePatternedText [20.05.17] – Italicises all text in the document in current background pattern colour

AynHamzaFormat [26.03.24] – Corrects formatting of ayns and hamzas
OddQuoteSpacingCorrectAll [16.11.22] – Corrects the odd/weird/funny spacing on quotation marks (from RTL fonts)
LtrRestore [29.03.24] – Restores text direction to left-to-right
OddQuoteSpacingCorrectDouble [22.07.22] – Corrects the odd spacing on double quotation marks

OddLanguageHighlighter [12.04.23] – Highlights any characters NOT in the chosen language
SpacedFontFinder [19.01.23] – Finds and highlights/underlines any text with odd spacing

ChapterStartBreak [05.03.23] – Finds all chapter titles (by style), adds page break and removes multi-newlines
FigureCaptionSplit [27.10.23] – Splits a caption into two lines, the second in italic
FigureCaptionSplitAll [30.10.23] – Splits all captions into two lines, the second in italic
FindHashAndStyleNext [19.01.23] – Finds a hash and changes the style of the following paragraph
FindMissingPageNumbers [28.09.23] – Clears trailing spaces, then highlights refs without page numbers

FontUnify [26.08.17] – Restore selection to same font size
FormatCopy [25.06.13] – Copy format of paragraph

QuotesOffBothEnds [03.09.22] – Removes single quotations marks from both ends of some text
QuotesOffBothEndsDoubleAddItalic [03.02.23] – Removes double quotations marks from both ends of some text + italicises
SanthoshQuoteSelect [25.01.21] – Changes exisiting single quotes into doubles
RaiseLowerClear [28.07.14] – Change weird super/subscript format to proper ones
SigloSmallCaps [24.02.22] – Finds "siglo" and small-caps the IVX following
StrikeItalicParagraphs [04.11.22] – Add single strike to all italic paragraphs (headings)
StrikeDouble [15.08.17] – Adds or removes double strike-through

StyleFollowingHeadings [13.04.18] – Sets the style of the paragraph after each heading
WhitenBlueParas [01.06.20] – No comment!

HardSpaceAfterSuperscriptNumbers [17.11.22] – Switches space to hard space after all superscripted number
EquationsAllItalic [02.11.20] – Makes all equations in the current selection italic
TitleConsistenciser [18.05.17] – Applies general formatting of heading to tagging and section number
SpacesInThousands [29.11.16] – Changes four-figure numbers from comma to space.
TitleCapAllItalic [29.11.16] – Changes all italic titles to title capitals.

[bookmark: _Toc55981606][bookmark: _Toc55981704]8. Global changes
FRedit – Does scripted global find and replace
MarkIt – Applies various attributes by (wildcard) F&R

FReditSelect – Run FRedit, but only on multiply selected text
FReditHeadingsOnly – Run FRedit, but only on similarly formatted text
FReditListRun – Loads, runs and closes a specific FRedit list
FReditListMenu – Provides a menu to run different FRedit lists
FReditCopy – Copies word to make FRedit list item
FReditCopyPlus – Copies word to make FRedit list item and highlight and case insensitive
FReditCopyWholeWord – Creates FRedit item for whole-word F&R
FReditListProcess – Tidies up a FRedit list from cursor downwards
FReditSame – Creates FRedit item with ^& (i.e. replace with itself, ready for format/highlight change)
FReditSwap – Swaps the two sides of a FRedit item
FReditSimple – Performs a list of F&Rs (a FRedit trainer)
MiniFRedit – Adds attributes to certain words
FReditListChecker – Checks for possible anomalies in a FRedit list
HyphenationToFRedit – Takes items from HyphenAlyse list (or ProperNounAlyse list), ready for the FRedit list
ProperNounToFRedit – Picks up alternative spellings in a PN query list for a FRedit list
FReditListCreate – Adds text to list items and applies formatting
FReditOne [08.11.13] – Copy one F&R to the top of the list

SpellingSuggest – Creates a FRedit list item using Word’s alternate spelling
SpellingCorrect – Corrects spelling and wrong capitalisation
FReditListTidy [24.04.24] – Tidies up a FRedit list
SpellAlyseToFRedit [23.04.24] – Corrects spelling and wrong capitalisation

CleanUp [10.06.20] – Cleans up a file by F&R

QuotationMarker – Applies strikethrough to all quotes and displayed text to protect them

TaggedTextToSmallCaps – Finds tagged text, lowercases it and changes to small caps
AcronymsToSmallCaps – Finds all acronyms (in text or selection) and changes to small caps
AllCapsToItalic [08.08.22] – Finds words in all caps and makes them italic
AllCapsToItalicNext [11.08.22] – Finds next word in all caps and makes it italic
InitialCapAllCapsWords [03.06.21] – Initial caps the all-caps words in a document

UnitSpacer – Finds all numbers with a unit and adds a thin space
SuperSubConvert – Changes weird super/subscript format to proper ones
SymbolToUnicode – Converts Symbol font characters to Unicode characters

TagsShowHide – Changes tags into hidden text and then reveals them again

MatchSingleQuotes – Checks whether single quotes match up
MatchParentheses – Checks whether brackets match up
MatchSquareBrackets – Check whether square brackets match up
MatchDoubleQuotes – Checks whether double quotes match up
QuoteMarkEmbedder – Changes double quotes inside double quotes to singles
EnclosureFixer – Checks and corrects the order of enclosures – brackets, braces and parentheses
QuotesOffBothEnds [03.09.22] – Removes single quotations marks from both ends of some text
QuotesOffBothEndsDoubleAddItalic [03.02.23] – Removes double quotations marks from both ends of some text + italicises
QuoteSingleToDoubleGlobal [15.01.23] – Changes single quotes to double, avoiding apostrophes

HighlightMissingDialoguePunctuation [22.09.22] – Highlights missing dialogue punctuation (from an idea by Katherine Kirk)

[bookmark: _Hlk98769326]ChapterChopper – Chops a book file into a set of chapter files
FileChopper – Chops text into a number of smaller file using page breaks

MultiChoiceTidierGlobal – Lowercases first word and remove end spaces and punctuation
MultiChoiceTidierSingle – Lowercases initial character of answer and remove end spaces and punctuation

FReditListRun – Loads, runs and closes a specific FRedit list
FReditListMenu – Provides a menu to run different FRedit lists
HeadingStyler – Styles all headings by depth of section number
BodyTexter – Applies ‘Body Text’ to every paragraph in ‘Normal’

StyleBodyIndent – Adds body style generally, plus ‘No indent’ after headings
FormatHeadwords – Adds a character style to the first word of every para in a given style
IndentChanger – Changes paras of one indent value to another
FirstLineIndentToTab – Changes all first-line indents to a tab

TableStripper – Strips out all tables into a separate file
BoxTextIntoBody – Copies text out of textboxes, then delete the boxes

ComboBoxAccept – Finds combo boxes and replaces them with the currently selected text

MultiFileAcceptTrackChanges – Accepts track changes in multiple files
MultiFileLoader [06.04.23] – Loads a set of files
MultiFileReferenceCheck [11.03.20] – Collects references, adds chapter labels, and sorts

ItalicParaDelete – Deletes all paragraphs that are mainly in italic

HighlightWithTrackChange – Use allcaps, smallcaps, underline for tracking highlighting
SmallCapsToProperNoun [11.02.18] – Changes every small caps word into initial cap + lowercase

CapitaliseUndoubler – Finds doubled capital letters and corrects them

HeadersFootersRemove [11.11.22] – Removes all headers and footers in all sections
WelcheKorrigiere [02.08.22] – Finds "welche" after a comma and corrects it
HeHisHide [08.06.22] – Adds StrikeThrough to any 'He' or 'His' as first word of sentence
ItalicSpeechToSingleQuotes [04.05.22] – Finds italic text, Romanises it and adds single quotes
TimestampRemover [29.08.21] – Deletes all timestamps of the form: nn:nn:nn<sp>
FunnyDashToEnDash [06.08.21] – Changes all funny dashes to proper en dash
FootnoteTidy [30.07.21] – Checks each footnote
CheckCapSentences [18.06.21] – Forces an initial capital on every sentence
InitialCapAllCapsWords [03.06.21] – Initial caps the all-caps words in a document
SrikeAllHighlightText [25.10.20] – Adds strikethrough to all highlighted text
ChatFormatter [23.10.20] – Load, run and close a specific FRedit list
ProcessMyList [17.09.18] – Italicise the first word of each paragraph
ZeroIndentFirstLine [29.03.15] – Zero indent on paragraph after heading
GreekHighlighter [05.11.17] – Finds unicode Greek sections of text and highlights them

ShapeShowHide [29.08.17] – Makes all shapes distinguishable
ShapeShowScrollDown [30.08.17] – Makes all shapes clearly visible
ShapeShowScrollUp [30.08.17] – Makes all shapes clearly visible

SpaceEquationsInPara [08.06.17] – Adds spaces to MathType equation in this para if necessary
HeaderToChapterTitle [13.05.17] – Copies the header and make it the chapter title
TimecodeEditor [22.10.14] – Increment/decrement timecode in a file
SubscriptNumbersRoman [02.08.14] – Make all subscript numbers roman
SuperscriptMinus [25.10.13] – Convert superscripted hyphens to minus signs
StrikeAllColouredFonts [23.05.13] – Add strike-through to all coloured text
SmallBullets [10.05.12] – Change auto bulleted list to small bullets
TagALLbulletLists [30.04.12] – Add tags to all bullet lists
TabbedParasToIndent [30.08.23] – Finds tabbed paras, deletes them and adds first-line indent instead

[bookmark: _Toc55981607][bookmark: _Toc55981705]9. Text cleaning after conversion from PDF or OCR
PDFsoftHyphenRemove – Unhyphenates split words
PDFhardHyphenRestore – Hyphenates falsely concatenated words
PDFHyphenRemover – Finds all end-of-line hyphens, joining back to the next word
PDFHyphenChecker – Checks the line-end hyphenation of a converted PDF
PDFunderlineToLigature – Restores underline characters into ligatures
PDFfunniesToLigatures – Restores ligatures that have been converted to odd characters
LigatureConverter – Replaces funny codes for fi/ff/fl/ffi in converted PDF
PDFspellAll – Underlines all ‘spelling errors’
PDFspellIgnoreProperNouns – Underline all spelling errors except proper nouns
PDFpageNumberer – Adds page numbers to each line of an exported PDF text
PDFrunningHeadHighlight [09.04.21] – Locates running heads and highlights/enlarges page number
PDF_LigatureConvert [20.02.17] – Replace underlines with fi/ff/fl/ffi in converted PDF
PDFsurveyor [08.11.13] – Identify PDF conversion problems
PDFpager [14.05.12] – Highlights page numbers of text from a PDF

[bookmark: _Toc55981608][bookmark: _Toc55981706]10. Highlighting (and colouring)
HighlightMinus – Removes or adds highlight in a choice of colours
HighlightPlus – Adds highlight in a choice of colours
HighlightYellow – Highlights the selected text (or a word or a paragraph)
HighlightBrightGreen – Highlights the selected text (or a word or a paragraph)
HighlightEditGrey [06.09.13] – Highlight current edit in light grey
HighlightEditYellow [06.09.13] – Highlight current edit in yellow
HighlightRemovePerColour [03.04.24] – Removes highlight of one colour from selection or whole text
ColourMinus – Removes or add font colour in a choice of colours
ColourPlus – Adds font colour in a choice of colours
ColourToggle – Turns red text on/off
ColourPlusAttribute [06.06.23] – Applies font/highlight colour plus an attribute

HighlightOrColourRemove [15.04.24] – Removes the current highlight or font colour from the whole text
HighlightOffIncNotes – Removes all highlights and/or colour from text and notes

UnHighlightExcept – Removes all highlights except one/two chosen colours
SelectiveUnColourUnHighlight – Removes highlighting + colouration, but only on non-program text

ClearHighlightAndColour – Removes all highlighting, colouration and (optionally) underlining
HiLightON – Adds highlight in currently selected colour
HiLightTurquoise – Adds highlight in turquoise
HiLightOFF – Removes highlight (text colour) from selected text
HiLightOffALL – Removes ALL highlights (text colour) from whole text
HiLightOffCurrentLine – Removes highlight (text colour) from selected text or current line

HighlightSame – Highlights all occurrences of this text in this colour
HighlightAndColourSame – Highlights and/or colours all occurrences of this text in this colour
FontColourSame – Colours all occurrences of this text in this colour
HighlightOffWord – Removes highlight from all occurrences of this word
HighlightOffNext [15.05.21] – Unhighlights the next area of highlighting
HighlightOffNextWord [15.05.21] – Unhighlights the next word that has some highlighting

HighlightFindDown – Selects the next piece of highlighted text
HighlightFindUp – Selects the previous piece of highlighted text
SelectNextHighlight – Selects the next piece of highlighted text
SelectPreviousHighlight – Selects the previous piece of higlighted text

FindColouredText – Finds coloured text
FindColouredTextUp – Finds coloured text
FindNonBlackFont [25.10.17] – Finds next non-black font

HighlightLister – Lists all the highlight colours used
HighlightListerDeLuxe – Lists all the highlight colours used and which are not used
HighlightWordList – Highlights (and/or colours) all the words/phrases given in a list
HighlightCertainCharacters – Highlights certain characters with attributes
HighlightAllItalic – Highlights all text in italic (including in notes)
CopyHighlightedTextSentences – Copies sentences containing highlighted text into a new file
CopyHighlightedTextParagraphs – Copies paragraphs containing highlighted text into a new file
RevisionHighlight – Highlights all the edits in a text
CountWordsInHighlightColour – Counts the number of words in a given highlight colour or all highlighted words
CountHighlightColour – Count how many times a highlight colour occurs

HighlightWithTrackChange – Use allcaps, smallcaps, underline for tracking highlighting

HideShowText – Makes body text invisible (therefore emphasises other elements, e.g. text boxes)

BordersAddToText – Changes underlined+highlighted text to coloured borders
BordersAllOff – Removes border attributes from some or all text
BorderParaOffSelective [06.08.11] – Removes the borders applied to the paragraph
BordersAddParagraphs [08.03.23] – Adds colour borders to (partly) selected paragraphs

Confusables – Highlights/colours list of words in confusables file
HighlightComments [16.11.22] – Highlights all comments with specific prefix
HighlightTrackedTextAuthor [02.02.24] – Highlights all tracked text by a specific author
HighlightAllTrackedText [15.04.22] – Highlights (and/or font colours) all tracked text
HighlightToStyles [03.08.21] – Finds highlighted text and does things to each colour
ParticipleSentenceStartShow [04.01.24] – Underlines + highlights the participles that start sentences
HighlightInContext [30.03.24] – Highlights a word or phrase in its context in a sentence/paragraph

[bookmark: _Toc55981609][bookmark: _Toc55981707]11. Internet
URLlauncher – Launches successive URLs from the text

BibleGatewayFetch – Launches Bible references on BibleGateway
BibleHubFetch – Launches Bible references or Bible quotes on BibleHub
BLcatalogueFetch – Launches selected text to the British Library catalogue
DictionaryFetch – Launches selected text to dictionary.com
DictionaryFetchByLanguage – Checks the current word in a language-related dictionary
DictionaryFetchDE – Launches selected text to duden.de
DictionaryFetchNL – Launches selected text to https://www.vandale.nl
DictionaryMultipleFetch – Launches selected text to dictionary.com and other dictionaries
DPTMFetch – Launches selected text on DPTM - Busca el texto seleccionado en el Diccionario de términos médicos
DTMEfetch – Launches selected text on DTME
GoogleBooksFetch – Launches selected text to Google Books
GoogleFetch – Launches selected text to Google
GoogleFetchAR – Argentina
GoogleFetchAU – Australia
GoogleFetchCA – Canada
GoogleFetchChile – Chile
GoogleFetchCO – Colombia
GoogleFetchCookie – Launches selected text to Google website with cookie prompt
GoogleFetchDE – Germany
GoogleFetchEgypt – Egypt
GoogleFetchEgypt – Egypt
GoogleFetchES – Spain
GoogleFetchIE – Ireland/Eire
GoogleFetchIndia – India
GoogleFetchMX – Mexico
GoogleFetchNL – Netherlands
GoogleFetchNZ – New Zealand
GoogleFetchPE – Peru
GoogleFetchQuotes – Launches selected text – with quotes – to Google
GoogleFetchQuotesCA – Canada
GoogleFetchQuotesDE – Germany
GoogleFetchQuotesEgypt – Egypt
GoogleFetchQuotesNL – Netherlands
GoogleFetchQuotesUS – USA
GoogleFetchSA – South Africa
GoogleFetchUS – USA
GoogleMapFetch – Launches selected text to Google Maps
GoogleScholarFetch – Launches selected text to Google Scholar
GoogleTranslate – Launches selected text to Google Translate
LawDictionaryFetch – Launches selected text to Dictionary.Law website
MacquarieFetch – Launches selected text to the Macquarie dictionary
MerriamCollegiateFetch – Launches selected text to Merriam-Webster collegiate website
MerriamFetch – Launches selected text to Merriam-Webster
MerriamLegalFetch – Launches selected text to Merriam-Webster legal website
MerriamMedicalFetch – Launches selected text to Merriam-Webster medical website
MerriamThesaurusFetch – Launches selected text to Merriam-Webster thesaurus website
MerriamUnabridgedFetch – Launches selected text to Merriam-Webster unabridged website
NgramFetch – Launches selected text on Google Ngram
OneLookFetch – Launches selected text to OneLook
OEDFetch – Launches selected text to OED dictionary
OUPFetchPremium – Launches selected text to OUP
PubMedFetch – Launches selected text to PubMed
RAEfetch – Launches selected text on Real Academia Española
ThesaurusFetch – Launches selected text to thesaurus.com
WikiFetch – Launches selected text to Wikipedia
WordHippoFetch – Launches selected text on Google
WorldCatFetch – Launches selected text to WorldCat

SomethingFetch – Launches selected text to Xyz website.
SomethingFetchAlt – Launches selected text to Xyz website.

CMOSFetchAlt [28.08.22] – Launches selected text to CMS website.

[bookmark: _Toc55981610][bookmark: _Toc55981708]12. Language
UKUShighlight – Marks US spellings within UK text and vice versa
LanguageHighlight – Highlights all text not in main language
LanguageSetUK – Sets language as UK English
LanguageSetUS – Sets language as US English
LanguageSetCanada – Sets language as Canadian English

(The next four all do more or less the same! Oops!)
[bookmark: _Hlk86479007]LanguageToggle [29.10.21] – Toggles the language setting of (part selected) text
LanguageSetMulti [07.06.23] – Toggles between different language country settings
LanguageSwitch [16.08.23] – Switches the language between two or three alternates
LanguageUSUKswitch [06.10.23] – Switches language between UK and US English

[bookmark: _Toc55981611][bookmark: _Toc55981709]13. Lists
SortIt – Sorts the selected text
DuplicatesRemove – Removes duplicate items from a list
SortNumberedList – Sorts numbered list, ignoring the number at the beginning
SurnameSorter – Sorts a name list on surname, but allowing for postfixes
SortOnTextAfterDelimiter – Sorts the selected list based on second 'field'
BibSortWithDittos – Sorts bibliographic list including ditto marks
CitationListSortByYear – Sorts items in a citation list in the text by date
CitationListSortByName – Sorts items in a citation list in the text by name.
SortListInText – Sorts items in a list in the text alphabetically
SortAndRemoveDups – Sorts the selected text and removes duplicate items
SortCaseSense – Sorts into separate lists: Lcase/Ucase
SortTextBlocks – Alpha sorts blocks of text by first line
ReverseList – Reverses the order of items in a list (just the actual order, not alphabetically)

ConcordanceMaker – Creates a concordance list

BasicIndexer – Does basic indexing
BasicIndexer2 – Also does basic indexing

ListBulleter – Adds a bullet to every paragraph in a list
TagBulletLists – Adds tags to all bullet lists
AutoListOff – Changes auto-bulleted listing to real bullets
AutoListOffSimple – Changes auto-lists to text

ListItemNumberFormatter – Format the numbering of the current list item
NumberSelectedList [12.03.24] – Applies (or corrects the existing) numbering on the selected text paragraphs

AutoListLcaseAll – Lowercases initial letter of all auto-bulleted/numbered list items
AutoListLcaseOne – Lowercases initial letter of one auto-bulleted/numbered list item
VerseListFormat – Formats list(s) or poem verse(s) with manual linebreaks
BoldFirstOccurrence – Emboldens the first occurrence of words in a (glossary) list

ContentsListChecker – Confirms the page numbers in the contents list
ContentsListerByNumber – Creates a contents list from numbered headings
ContentsListerByStyle – Creates a contents list from numbered heading style
ContentsListerByTag – Creates a contents list from tags, <A>, etc

AcronymAlyse – Lists all acronyms, with frequency
AcronymLister – Lists all acronyms
AcronymFinder – Finds a group of words that might match an acronym
AcronymDefinitionLister – Creates a list of acronyms with definitions

ListAllColouredWords – Creates an alphabetic list of all words in the selected font colour
ListHighlightedText – Lists alphabetically any text that is highlighted
ListAllLinks – Creates a list of all the URLs in a file, both the visible text and the underlying URL

ListSemicolon – Adds semicolons to bulleted list
SemicolonEndPara – Lowercases first character and adds semicolon at end
ListLowercaseNoPunct – Lowercases initial character and removes end punctuation
ListUppercaseNoPunct – Uppercases the initial character and removes end punctuation
ListLowercaseSemicolon – Adds semicolons to bulleted list and lowercases initial character
ListLowercaseComma [09.02.21] – Adds commas to bulletted list + lowercase initial char
ColonLowercaseAll – [23.07.22] – Changes the initial letter after every colon to lowercase
ColonUppercaseAll – [23.07.22] – Changes the initial letter after every colon to uppercase

FullPointOnBullets – Finds bullet items and ensures they have a full point
IndexElide – Adds elision to an index
IndexPageOrderChecker [21.11.23] – Seeks paragraphs that have number list in wrong order
IndexPageNumberSwap [21.11.23] – Swaps the page number at the cursor with the next number, e.g. 3,6,4,8,10

ListHighlighter – Highlights all ‘short’ paragraphs in a text in order to locate lists
ParaWordLengthHighlighter – Highlights all paragraphs of a range of word lengths

CustomKeys – Opens the Customize Keyboard dialogue box
KeystrokeLister – Creates a tabulated list of custom key allocations

KeystrokesMacroSave – Creates a list of all macro keystrokes
KeystrokesMacroRestore – Applies keystrokes from a list of macros and keystrokes
KeystrokesSaveAll – Creates a list of all user-defined keystrokes
KeystrokesRestoreAll – Creates keybindings from a list

MacroVersionChecker – Checks version dates of all your macros against MacroList
MacroUpdater – Updates to the current macro text, preserving the keystroke

ListOfTextParas – Lists all paragraphs (pure text) starting with certain text
ListOfParas – Lists all paragraphs (formatted text) starting with certain text
ListHighlightedOrColoured – Lists (alphabetically) text with font colour or highlight
ListOfList – Lists all items in a list that contain a particular text

CopyToList – Copies selected text into a list file
CopyToListAlphabetic – Copies selected text into an alphabetic list file
(No idea why the next is different.)
CopyToListTitles [15.10.17] – Copies selected text into a list file
CopyToSwitchList [04.12.23] – Copies selected text into a switch list file for MultiSwitch
AddWordToStyleList – Adds the selected text to the style list file (similar but with formatting)

AlphaHeadersOnIndex – Adds alpha headers to an index
FontColourDocumentSplit – Splits a document into coloured and not coloured

ProcessMyList [17.09.18] – Italicise the first word of each paragraph
MakeOKwordsList [26.10.19] – Makes a list of all words not highlighted
QuoteExtractor [23.03.20] – Copies paragraph that contain italic text and are indented or contain quotes
CopyIntelligent [19.12.18] – Sets up copy assuming word or paragraph
DeleteBackToSentenceStart [23.04.21] – Selects from current word to end of sentence and deletes
DeleteLine [10.10.16] – Delete current line
DeleteQuote [08.07.13] – Go to next quote mark and delete it
DeleteThisChar [26.09.17] – From the cursor, it tries to delete one of the listed characters
DeSexer [18.01.20] – Finds one of your words, then calls MultiSwitch to change it

[bookmark: _Toc55981612][bookmark: _Toc55981710]14. Notes
NotesEmbed – Embeds footnotes or endnotes
NotesUnembed – Unembeds footnotes or endnotes
NotesUnembedBySections – Unembeds endnotes that are numbered in sections
RenumberNotes – Renumbers all note numbers
NotesInlineToEmbed – Copies square bracketted notes into embedded notes
NotesCopyToInline – Copies notes into inline notes in square brackets
FootnoteTidy [30.07.21] – Checks each footnote

NoteFootEndSwitch – Switches individual footnote <-> endnote (in note or in text)

RenumberSuperscript – Renumbers all superscript numbers
ListRenumber – Makes all following numbered items in a list consecutive

NoteJumper – Jumps back and forth between notes and main text
FootnoteNext – Jumps to next footnote
FootnoteNextUp – Jumps to previous footnote

FootnoteEndnoteFiddle – Tidies up start/end of each footnote or endnote
FootnoteNumberNotItalic – Makes changes to all footnotes
NoteDeleteDblSpace – Deletes double spaces from endnotes
EndNoteFiddleSuperscript – Makes changes to superscript on all endnotes
FootnoteFiddleStartSpace – Removes initial space from each footnote

DeleteAllFootnotes – Deletes all footnotes
DeleteAllEndnotes – Deletes all endnotes

FootnoteAdd – Creates a new footnote (in a given style and/or sq. brackets)
EndnoteAdd – Creates a new endnote (in a given style and/or sq. brackets)

SupercriptNumberFormatter – Corrects spaces + punctuation on superscripted numbers

NoteRelocater [01.02.18] – Takes footnotes out into the running text

[bookmark: _Toc55981613][bookmark: _Toc55981711]15. Numbering and lettering
NumberDecrement – Subtracts one from the following number (or subtracts a specific number)
NumberIncrement – Adds one to the following number (or adds a specific number)
LetterDecrement – Picks up the current character and replaces with the alphabetically previous character
LetterIncrement – Picks up the current character and replaces with the alphabetically next character
NumberToFigure – Converts the next number, looking through the text, to a figure
NumberToText – Converts next number into text
NumberToTextMultiSwitch – Finds a number, then calls MultiSwitch to change it
TextToNumber – Finds numbers expressed in words + converts to figures

FigTableBoxLister – Finds figure/table/box elements and their citations, to spot missing elements
CaptionsListAll – Lists all paragraphs with bold "Figure", "Table", "Box"
ColumnTotal – Do the numbers in this column agree with the total?
NumberTotaller – Sums the numbers within the selected text (or checks the sum)

AlphabeticOrderChecker – Finds any suspicious non-alphabetism
AlphaOrderChecker – Creates an alpha-sorted version of selected text showing changes
AlphabeticOrderByLine – Finds any suspicious non-alphabetism

FindNextNumber – Jumps from one number to the next – section, fig, table etc
FindPreviousNumber – Jumps back to the previous number
NumberSequenceCheckerSimple – Checks consecutivity of simple numbering
NumberSequenceCheckerDecimal – Checks consecutivity of numbering containing a decimal point
NumberSequenceCheckerHierarchical – Checks the sequence of hierarchical section numbers
AddSectionNumber – Adds indexed section number
NumberParasAuto – Adds hierarchical section numbering
NumberParasTagged – Adds numbering to first-level headings tagged with <a>
TypeSectionNumber – Adds a section number to the current heading
FindNextBigText – Searches down for a bigger than Normal font (related to above macro)

NextNumber – Finds next section number
NextNumberPlus – Finds next section number (can’t remember what the difference is, sorry!)
NextNumberPlusUp – Finds previous section number
NextNumberUp – Finds previous section number

SectionNumberChecker [16.02.11] – Check the sequence of section numbers

[bookmark: _Toc55981614][bookmark: _Toc55981712]16. References
[bookmark: _Hlk121392933]CitationAlyse – Checks citations against references
ParagraphShrink – Shrinks the current paragraph (for use with CitationAlyse)
[bookmark: _Hlk98769485]ShortTitleAlyse – Analyses short titles to check references against citations

ShortTitleUnderline – Underlines the current author name(s)
CitationListSortByYear – Sorts items in an in-line citation list in the text by date
CitationListSortByName – Sorts items in a citation list in the text by name.
SortListInText – Sorts in-line citations in a list in the text alphabetically
VancouverCitationChecker – Finds all citations and creates a list in citation order
VancouverAllCited – Creates a numerical list of all cited Vancouver reference numbers
FindRefName [18.07.12] – Jump to the first named Vancouver ref, e.g. [Bever09]
ShortTitleLister – Creates a list of the named references in the notes

AuthorDateFormatter – Checks/corrects author/date formatting of reference list
AuthorInitialCapitalReferences – Changes author surnames in all capitals to initial capital
EtAlElision – Crops multi-authors in refs lists to a given number before ‘et al’
EtAlCitationElision – Crops multi-author citation in the text to single name + ‘et al’
EtAlElisionSharman [02.03.15] – Crop multi-authors to a given number before 'et al'
EtAlReducer [13.02.15] – Reduce the number of names before "et al"
HighlightMultiAuthorCitations – Finds and highlights all the multi-author citations in the text
AuthorNameSwap – Changes the order of author surname and initials/given name
SwapNames – Changes the order of author surname and initials/given name
SwapNamesFullPoints – Swap name and initials and add full points
AuthorSurnameSwap [19.05.21] – Moves author surname in a list to the beginning of the line
ListSurnameSwap [29.01.18] – Swaps forename first to surname first in selected text
InitialPullBack – Pulls author's trailing initial(s) (e.g. B. or C.D.) in front of surname
AuthorForenamesInitialiser – Changes author forenames to initials
AuthorsNotAllCaps – Changes author surnames to initial cap only (e.g. SMITH, J. to Smith, J.)
AuthorCaseChange – Lowercases author surnames (e.g. SMITH, J. to Smith, J.) in references list
AuthorNameReinsert – Replaces the dash-and-comma for the author's name (comma)
AuthorNameReinsertParens – Replaces the dash-and-comma for the author's name (parenthesis)
NamesReverse [13.06.22] – Switches two names and adds (or removes) the comma
NameSwitcher [27.07.15] – Changes "surname, forename(s)/initials," to other way round
NameToInitial [02.03.15] – Change given name to initial, then jump on to next
GivenNameToInitials [27.03.14] – Reduce given names to initial only
InitialiseFornamesInList [10.02.20] – Changes forenames within a list to initials
YearMoveToEnd – Moves the year to end of the reference
InitialSwapper – Swaps initials and surname (P.E. Beverley -> Beverley, P.E.)
InitialSwapperReverse – Swaps initials and surname (Beverley, P.E. -> P.E. Beverley)
PublisherSwitch [14.11.23] – Swaps "Location: Publisher Name" to "Publisher Name, Location"
ReferenceNameDateMover – Moves forename/initials to before surname or move year to end
ShortTitleLister – Creates a list of the named references in the notes
ReferenceNameFinder – Gets date from reference and adds after author citation
ReferenceDateShift – Moves date from end of reference to after author
MultiFileReferenceCollator – Collects all references (or foot/endnotes) from multiple files
ReferencesCollator – Finds all reference lists, and colours, collates and sorts them
CitExtraBits [04.07.20] – Creates a list of all citations
FootnoteReferenceExtract [11.03.17] – Extracts references from footnotes, leaving Harvard citation
MoveNextName [02.03.15] – Jump on to the next word that could be a forename
RefCitationConvert [04.04.20] – Converts superscripted ref. citations to bracketed
SurnamesAllCaps [18.09.15] – Capitalise all the surnames in a refs list
SurnamesInitialCapital [18.09.15] – Initial capital all the surnames in a refs list
MultiFileReferenceCheck [11.03.20] – Collects references, adds chapter labels, and sorts

[bookmark: _Toc55981615][bookmark: _Toc55981713]17. Speed editing
(Video: youtu.be/SfU0gT8VAk4)

MultiSwitch – Switches the word(s) at the cursor with the alternate from your own list
WordSwitch – Scripted single-word switching (less useful than MultiSwitch?)
SearchThenMultiSwitch – Finds one of your words, then calls MultiSwitch to change it
SearchThenChange – Finds one of the words from a list, then changes to its alternate
CharacterSwitch – Scripted character switching
ClipboardLoader – Puts text in clipboard from a menu
ClipStore – Copies the selected text into a clip list
ClipPaste – Collects and pastes an item from a clip list
ClipPaste_1 – Collects and pastes a numbered item from a clip list
ClipPasteTextOnly – Collects and pastes an item from a clip list
ClipToTextWithEmphasis – Get pure text from pdfs and websites

TypeA – Types ‘a’ or ‘A’, (or ‘an’ or ‘An’) between two words
ArticleChanger – Types, deletes or switches articles ‘the’/‘a’/‘an’

TypeThat – Types ‘that’ between two words
ThatWhich – Changes ‘that’ to ‘which’ and vice versa
TickInsert [07.05.22] – Adds a bold red tick
TypeBy [07.11.19] – Types 'by' between two words.
TypeThis [19.12.14] – Type something (e.g. "this") and maybe highlight the line

AccentPicker – Call up the Insert Symbol window set to accented characters
GreekPicker – Call up the Insert Symbol window set to Greek characters
SciMarkPicker – Call up the Insert Symbol window set to Greek characters

DeleteOneWord – Deletes current word, but no punctuation (was called DeleteWord)

NumberDecrement – Subtracts one from the following number (or decrease the letter by one, alphabetically)
NumberIncrement – Adds one to the following number (or increase the letter by one, alphabetically)
IncJump [27.01.17] – Adds one to the following number (or increase the letter) then jumps
NumberToFigure – Converts the next number, looking through the text, to a figure
NumberToText – Converts next number into text
NumberToTextUK – Converts next number into text
NumberToText2 – Converts next number into text
NumberToTextUK2 – Converts next number into text
NumberToTextCMOS – Converts next number into text, using e.g. "fourteen hundred"
NumberToTextMultiSwitch – Finds a number, then calls MultiSwitch to change it
ZifferWort – Converts the next number (1 to 12) into German text
TextToNumber – Finds numbers expressed in words + converts to figures
FourDigitHundreds [04.10.22] – Changes four-figure numbers to words

CharToAcute – Adds an acute accent to the next vowel
CharToGrave – Adds a grave acute accent to the next vowel
CharToCircumflex – Adds a circumflex to the next vowel
CharToUmlaut – Adds various accents
CharToVariousAccents – Adds various accents
CharToMacron – Adds a macron accent to the next vowel

HighlightFindDown – Selects the next piece of highlighted text
HighlightFindUp – Selects the previous piece of highlighted text
SelectNextHighlight – Selects the next piece of highlighted text
SelectPreviousHighlight – Selects the previous piece of higlighted text

SwapCharacters – Switches characters either side of cursor
SwapPunctuation – Swaps the punctuation at the end of some words
DialoguePunctuationSwitch [12.09.19] – Switches adjacent word link between comma and full point
IncludeBracketInSentence [24.08.12] – Move the full point to after the bracketed reference
SwapPreviousCharacters – Switches the two characters in front of the caret
SwapWords – Swaps adjacent words, including formatting
SwapThreeWords – Swaps three adjacent words (chips and fish −> fish and chips)

CaseNextChar – Changes case of the next character
CaseNextWord – Changes case of initial letter of next word or selection
CaseThisWord – Changes initial case of current word and jumps to next word
CaseSecondNextWord – Changes case of next-but-one word
CaseThisWordJumpNextWord – [31.01.21] – Changes case of initial letter of word and jump to next word
CaseNextPara – Changes case of initial letter of the paragraph

CapperMax – Uppercases initial letter of all major words (title case)
CapperMin – Lowercases initial letter of capitalised words (sentence case)
TitleHeadingCapper – Uppercases initial letter of all major words in heading (so-called ‘title case’)
TitleUnCapper – Uppercases initial letter of heading only on very first word (so-called ‘sentence case’)
HeadingSentenceCase – Sentence-cases this selection or paragraph (but not acronyms)
LowercaseHeading [06.09.11] – Lowercase caption/heading and find the next one
TitleInQuotesCapper – Uppercases initial letter of all major words between quote marks (so-called ‘title case’)
TitleInQuotesCapperGlobal – Uppercases initial letter of all major words between quote marks (so-called ‘title case’)
TitleInSquaresCapperFR – Title-cases words of a title between square brackets (in French or English)
AddQuotesAndTitleCap – Puts quotes on sentence, then makes it title case
TitleRemoveQuotesAndCaps – Removes quotes from current sentence, then makes it lowercase
InitialCapWord [18.09.15] – Initial capital word at cursor
InitialiseOne [24.01.19] – Initialise one word then skip one
ItaliciseVariable_New [26.06.13] – Run along to find alpha chars and italicise them
ItaliciseWord [08.08.14] – Italicise current word and move on
ItalicOffWord [18.05.17] – Removes all italic and underline from selected text (or current word)
VerbChanger – Changes “(to) splodge” <−> “(of/for) splodging”
TenseChanger [18.01.20] – Finds one of the words from a list, then changes to its alternate
ParticipleChanger – Toggles between past to present participles
VerbChangerNL – Changes Dutch verbs in current sentence
VerbChangerNLglobal – Changes Dutch verbs through the whole file
SpellingSuggest – Checks/corrects spellings, and for FRedit list adds suggested change
SpellListAdd [03.06.11 modified Version 28.11.11] – Take current word and add to FRedit list
SpellListAll [09.05.11 modified Version 28.11.11] – Create a FRedit list for all coloured words
Pluralise – Converts the word at the cursor to its plural form (-s, -oes, ches and -ies)

QuotesAddDouble – Adds double quotes to the current word or phrase
QuotesAddSingle – Adds single quotes to the current word or phrase
DoubleQuotesToSingle – Changes all occurrences of a specific phrase from double to single curly quotes

CommaAdd – Adds a comma after the current word
CommaAddUSUK – Adds a comma (taking account of US/UK punctuation conventions)
CommaAddPrevious – Adds a comma before the current word
DialoguePunctuationSwitch [12.09.19] – Switches adjacent word link between comma and full point
DoublePrime – Adds double prime
SinglePrime – Adds single prime
PunctuationOffRight – Removes the punctuation off a word end (and quote off beginning)
PunctuationOffNearHere – Removes the punctuation near the cursor
PunctuationOff – Delete the next punctuation item
QuotesOffBothEndsDouble – Removes double quotations marks from both ends of some text
QuotesOffBothEndsSingle – Removes single quotations marks from both ends of some text
ScareQuoteAdd – Add single quotes round a word
DoubleQuotesSingleTopical – Changes double quotes around current text to singles
SingleQuotesDoubleTopical – Changes single quotes around current text to doubles
QuoteCopier – Copies text from one quote pair to the next
MoveToNextQuote – Moves cursor to the next quote pair
TypeTimesX – Types ‘(×2)’ then moves back to the number, ready to increase it
DeleteSentenceAfterQuote – Deletes rest of sentence after current quote
JumpToSentenceEnd [22.07.15] – Move to the end of the current sentence

FinalCharDelete – Removes the final character or punct off a word
PunctOffRightGo [17.09.10] – Remove the final character or punct off a word and move on
JoinTwoWords – Joins two words
WordPairPunctuate – Makes word pair hyphenated or single word

PunctuationToApostrophe – Changes next quote mark to an apostrophe
ApostropheS [13.06.20] – Adds an apostrophe before the s
ApostropheAdd [08.12.22] – Adds an apostrophe, highlighted
PunctuationToComma – Changes the next punctuation item to a comma
PunctuationToDoublePrime – Changes next quote mark to double prime
PunctuationToDoubleQuote – Changes next quote mark to double
PunctuationToDoubleQuoteDE – Changes next quote mark to German double
PunctuationToDoubleQuoteFR – Changes next quote mark to French double
PunctuationToEmDash – Changes next hyphen/em/en dash to an em dash
PunctuationToEnDash – Changes next hyphen/em/en dash to an en dash
PunctuationToFullPoint – Changes the next punctuation item to a full point
FullPointMissing [06.08.15] – Add a full point to the next line that doesn't have one
PunctuationAfterCitation [17.10.22] – Moves the full point (period) to after the citation
PunctuationToHyphen – Changes the word break punctuation to a hyphen
PunctuationToMinus – Finds punctuation and changes to minus sign
PunctuationToMultiplySign – Changes next x or X to multiplication sign
PunctuationToNonBreakingEmDash – Changes next hyphen/em/en dash to a non-breaking em dash
PunctuationToNonBreakingEnDash – Changes next hyphen/em/en dash to a non-breaking en dash
PunctuationToSinglePrime – Changes next quote mark to single prime
PunctuationToSingleQuote – Changes next quote mark to single
PunctuationToSingleQuoteDE – Changes next quote mark to German single
PunctuationToSingleQuoteFR – Changes next quote mark to French single
PunctuationToSpace – Changes the next punctuation item to a space
PunctuationToThinSpace – Changes the next punctuation item to a thin space
PunctuationToTimesSign [06.06.20] – Changes the next 'x' to a times sign
HyphenationRestore [04.02.13] – Unhyphenate split words

PunctuationSwap – Swaps the next punctuation mark
ExclamationMark – Makes adjacent words into sentence end
FullPoint – Makes adjacent words into sentence end
QuestionMark – Makes adjacent words into sentence end
Semicolon – Makes adjacent words into semicolon separated
Dash – Removes punctuation, add dash and lowercases next char
EmDashUnspaced – Removes punctuation, adds unspaced em dash and lowercases next char
Colon – Makes adjacent words into colon separated
Comma – Makes adjacent words into comma separated
CommaInDialogue – Gives adjacent words a comma link
FullPointInDialogue – Makes adjacent words into sentence end
ProperToPronoun – Changes the next proper noun to a personal pronoun
AddTextRoundText – Adds text at either end of a word or phrase (can delete punctuation)
ParenthesesAdd – Puts parentheses round the current word or phrase
ParenthesesEtcPairDelete – Removes the following pair of parentheses or quotes, etc.

AutoCurlyQuotesOFF – Switches off auto curly quotes
AutoCurlyQuotesON – Switches on auto curly quotes
CurlyQuotesToggle – Switches on auto curly quotes on and off

FrenchQuotes – Switches UK quotes to French quotes
GermanQuotes – Switches UK quotes to German quotes

Ampersand – Changes ampersand (&) to ‘and’
AndToAmpersand [23.06.23] – Change the next citation from "and" to "&"
AndToAmpersandGlobal [23.06.23] – Changes all citations from "and" to "&"
AmpersandAdd [23.06.23] – Adds an ampersand in front of the current name
AsWellAsToAnd [24.09.22] – Changes 'as well as' to 'and', and the comma, if necessary

ColonUnbold – Romanises bold colons that are followed by roman text
BoldThisWord [11.08.22] – Makes the word at the cursor bold
HighlightNonRomanPunctuation [25.03.20] – Highlights non-roman punctuation

ItalicQuoteToggle – Toggles between italic and single quote
NonCurlyApostrophe – Adds non-curly single quote
NonCurlyQuote – Adds non-curly double quote
ApplyAttribute – Apply attribute to current cell, row, column, paragraph, sentence, word or selection

SelectWord – Selects current word
SelectionStartExtend – Moves the start of the selection further out to the left (i.e. extends it)
SelectionStartShrink – Pulls the start of the selection back to the right (i.e. shrinks it)
SelectionEndExtend – Moves the end of the selection further out to the right (i.e. extends it)
SelectionEndShrink – Pulls the end of the selection back to the left (i.e. shrinks it)
SelectionRoundOff [08.06.23] – Extends the existing selection to the nearest word end/start
SelectionGrowLeft [02.09.23] – Extends the selection word by word to the left
SelectionGrowRight [02.09.23] – Extends the selection word by word to the left

SelectSentence – Selects current sentence
SelectParagraph – Selects current paragraph

TagSelectedOrItalic – Adds red tags to the selected text or italic text
TagSelectedOrBold – Adds red tags to the selected text or bold text

AllCapsToInitialCap – Initials-caps any words in all caps
DeleteRestOfSentence – Deletes from the end of the current word to the end of the sentence
DeleteToNextPunctuation – Deletes from the end of the current word to next punctuation mark
DeleteRestOfLine – Deletes from the beginning of the current word to the end of the line
SelectToSentenceEnd [23.04.21] – Selects from current word to end of sentence
FinalPhraseMoveForward – Cuts the final phrase of a sentence and pulls it to just after the cursor-word
ParaDelete [29.10.21] – Deletes the current paragraph
ParaSplitJoin [13.09.19] – Splits the para after current word or joins to next para

SearchTheseWords – Finds the next occurrence of any of a list of words

CompareTexts – Compares copied text (i.e. clipboard contents) with selected text
CompareTextsOLD – Selects non-identical texts (was called IdenticalTextCheck)

OxfordCommaSelectiveDelete – Moves to next Oxford comma and/or deletes current comma first
RulersShow – Switches Word’s ruler on and off
However – Starts a sentence with 'However', and removes the later "however"
SmallCapWord – Makes the current word smallcaps
MoveToStart – Move the selected text to the beginning of the sentence
ReplicateThisEdit – Replicates the change just made, through the rest of the file

WordsMoveLeft [15.04.21] – Moves the partly selected words one word left
WordsMoveRight [15.04.21] – Moves the partly selected words one word right
MoveWordLeft [30.11.19] – Moves current word one word to the right
MoveWordRight [30.11.19] – Moves current word one word to the left

EditStyle [27.07.10] – Pull up Edit style dialogue box
EmailAddress [05.02.21] – Puts my email address into the clipboard
Equation [03.01.10] – Insert an equation
FindChapterFileName [09.03.21] – Looks back up, to find the chapter title
FindUnderline [26.02.13] – Find underlined text
FormatText [15.10.21] – Formats a word/selection of whole words
GermanAccusative [18.06.21] – Forces the accusative -en ending to the current word
GermanDative [18.06.21] – Forces the dative -em ending to the current word
PluraliseDE [23.05.21] – Toggles the ending plural/singular (German)
LineConvert [15.07.21] – Converts 'poetry' line ends in selected text to new paragraphs
ListItemFinderShort [28.08.14] – Jump to an auto-list number
LocalFandR [26.09.17] – Does a find and replace, but only on the selected text
NonCurlyDoubleQuote [01.01.10] – Type a non-curly double quote
NoteMarkerMoveEndSentence [19.04.21] – Moves the foot/endnote marker to the end of the sentence
PageBreakColour [14.03.24] – Colours/highlights the lines either side of each page break
SentenceReverse [02.10.22] – Switches the order of the two sentences in the bullet point
[bookmark: myTempMark][bookmark: _Hlk98770753]
SplitLine [09.06.20] – Splits an email
TagListBulletsAll [15.07.17] – Find all bullet lists and tag them
TagListLettersAll [15.07.17] – Find all lettered lists and tag them
TagListNumbersAll [15.07.17] – Find all numbered lists and tag them
TOCupdate [16.12.13] – Update (and customise) the table of contents
WordCopierDown [25.03.24] – Copies the word from the beginning of the selection to the end
WordCopierUp [25.03.24] – Copies the word from the end of the selection to the beginning

ShiftUp – Moves a list item up
ShiftDown – Moves a list item up
ShiftOut – Moves items out into a separate list
ShiftIn – Moves items from the list back into the current document

[bookmark: _Toc55981616][bookmark: _Toc55981714]18. Speed navigating around the text
NavigationPanePrepare [16.06.23] – Copies text and prepares for Navigation pane (only needed for Macs)
NavPaneWidth – Widens the navigation pane
NavPaneCustomize – Opens the navigation pane where and how you want

FindFwdAll – Moves forward to next match: text > notes > comments

SmartFinder – Finds this text/note/page/date/heading/format etc, etc immediately
WildcardLoader – Tool for launching wildcard searches
WildcardSave – Reads the current 'Selection.Find' and saves at the top of the file
WildcardType – Reads the current 'Selection.Find' and types it in the file

MultiSearchLoader – Loads text segments into MultiSearch
MultiSearch – Searches for a set of words in proximity
MultiSearchUp – Searches for a set of words in proximity

FindThisOrThat – Find the next occurrence of certain specific words
FindThisOrThatSetUp – Set-up for finding the next occurrence of certain specific words

FindSamePlace – Finds the same place in another open file
FindSamePlaceBack – Finds the same place in another open file in reverse order

FindSamePageLine [17.12.12] – Finds the same place in another file by page and line
FindInProximity – Finds certain words within a given word range
FindInContextLoad – Loads name and date ready for FindInProximity macro

FindFwd – Finds next match forwards, case insensitively
FindFwdCase – Moves forward to next match, case-sensitively
FindBack – Next find backwards
FindBackCase – Next case-sensitive find backwards
FindReplaceGo – Finds, replaces and moves to the next match
FindReplaceStay – Finds and replaces but doesn't move to next
FindClip – Finds whatever is in the clipboard
FindClipTop – Jumps to the top, and finds whatever is in the clipboard
FindBackWild [09.01.21] – Next find wild backwards
FindFwdWild [09.01.21] – Next find wild forwards
FontMixFind [16.05.21] – Finds the next paragraph that has mixed fonts

FindResetParameters – Does a dummy find to set all the parameters to default

InstantFindDown – Finds selected text (or word at the cursor) downwards, optionally leaving a bookmark
InstantFindUp – Finds selected text (or word at the cursor) upwards, optionally leaving a bookmark
InstantFindDownWild – Finds selected text downwards with wildcards set on
InstantJumpDown – Finds selected text (or word at the cursor) downwards, but not changing the Find text
InstantJumpUp – Finds selected text (or word at the cursor) upwards, but not changing the Find text
InstantFindTop – Jumps to the top and then seeks the text that was at the cursor
InstantFindBottom – Jumps to the bottom and then seeks the text that was at the cursor

PrepareToReplaceDown – Copies text into the F&R box
PrepareToReplaceFromTop – Copies text into the F&R box from top
PrepareToReplaceWithMarker – Copies text into the F&R box from top leaving marker

FindInDeletedText – Searches only the deleted (track changed) text

JumpNextAppliedStyle – Jumps to the next applied style
FindStyleOld – Find text in this style
FindStyleOldUp – Find text in this style
FindStyle – Finds text in this style

ToCback – Jumps back to table of contents

CommentNext – Goes to next comment
CommentPrevious – Goes to previous comment
CommentsModernCollect – Extracts modern comments with format and colouring
CommentsModernDelete – Deletes current comment or all comments
ChangeNext – Finds next edited item (but not a comment)
ChangePrevious – Finds previous edited item (but not a comment)
CommentJumpInOut – Jumps into and out of comment text
PDFunderlineFR [16.03.14] – Find underline word

TableNext – Jumps to next table
TablePrevious – Jumps to previous table

BordersNext – Finds next paragraph with borders
BordersPrevious – Finds previous paragraph with borders
BorderParaOff – Remove the borders applied to the paragraph

AbbrSwap – Swaps abbreviation into or out of brackets
[bookmark: _Hlk142129810]AbbreviationAdd [15.06.22] – Creates an abbreviation of roughly selected text (in parenthesis)

BookmarkTempAdd – Adds temporary marker
BookmarkTempClear – Deletes temporary markers
BookmarkToCursorSelect – Selects from temporary marker to cursor
BookmarkTempFind – Jumps to temporary marker

FindNextBigText – Searches down for a bigger than Normal font
SearchTheseWords – Finds the next occurrence of any of a list of words

NoteNext [05.03.12] – Jump to next note
NotePrevious [05.03.12] – Jump to previous note
NavigationPanePrepare [07.06.23] – Copies text and prepares for search in the Navigation pane
ReviewPaneToggle [03.03.22] – Opens and closes the track change review pane
StylesPaneCustomize [29.07.22] – Moves the Styles pane where and how you want
CommentAddToTrackedChanges [06.04.23] – Adds a blank comment to every tracked change in the selected text

[bookmark: _Toc55981617][bookmark: _Toc55981715]19. Spelling
UKUScount – Has the author predominantly used UK or US spelling?
UKUShighlight – Marks US spellings within UK text and vice versa
IZIScount – For UK spelling, has the author predominantly used -is- or -iz- spellings?
	(For editing, you can use IStoIZ and IZtoIS to implement your decision.)
SpellingErrorLister – Generates an alphabetic list of all the different spelling ‘errors’ (according to MS Word)
SpellAlyse – Complete spellchecking system
ExceptionsListEdit [27.05.20] – Allows the user to edit, add to or replace the exceptions list
SpellCheckerPlus [27.05.20] – Spellchecks from cursor, using multiple languages
SpellCorrection [13.02.12] – Prepare highlighted word to be corrected throughout the text
SpellingErrorListerBilingual – Generates an alphabetic list all the bilingual spelling 'errors'
ProperNounAlyse – Alerts you to possible proper noun misspellings, showing their frequency
	(For editing, ProperNounToFRedit can be useful.)
FullNameAlyse – Creates a frequency list of all full names, e.g. Joe Bloggs, K Smith, Paul Edward Beverley
SpecialWordSpellAlyse – Does a ProperNounAlyse of all long ‘spelling error’ words
HyphenAlyse – Shows the frequency of word pairs in hyphenated, two-word and single-word form
HyphenationToFRedit – Takes items from HyphenAlyse list (or ProperNounAlyse list), ready for the FRedit list
WordPairAlyse – Shows the frequency of word pairs that are never hyphenated (e.g. can not/cannot)
AccentAlyse – Compares words that use the same letters, but with different accents
AccentedWordCollector – Collects all the accented words in a text
AAnAlyse – Highlights a/an errors: a onion, an pear, an union, a hour, a HTML, an UFO, a H, an U
DocAlyse – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), benefit(t), Fig(ure), Eq(n)
DocAlyseForMac – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
DocAlyseForThinMac – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
DocAlyseForVeryThinMac – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc
SpellcheckWordUK – Spellchecks single word UK
SpellcheckWordUS – Spellchecks single word US
DeleteAllSpellingErrors – Deletes all spelling errors from a file (why?!)
SpellingShowToggle – Switches visible spelling error indication on and off

[bookmark: _Toc55981618][bookmark: _Toc55981716]20. Tagging and caption formatting
(Much done globally using FRedit, but…)
TagList – Adds tags to a current numbered or bulleted list
TagBulletLists – Adds tags to all bullet lists
TagA – Adds a tag <A> to the current paragraph
CodeBoldParas – Tags/codes every bold heading
TableSpaceBeforeHeading – Adds a blank line where a numbered heading follows a table
AutoTagger – Automatically tags/codes all styled headings
FigTabBoxTagger – Adds tags to the captions of all figures, tables and boxes
ListOfTaggedHeadings – Lists all tagged headings, <A>, , etc
CodeIndentedParas – Add codes to indented paragraphs

TagSelectedOrItalic – Adds red tags to the selected text or italic text
TagSelectedOrBold – Adds red tags to the selected text or bold text
ItalicBoldTagger – Adds red tags to all italic and/or bold text
TagVariousAttributes – Adds red tags to all italic/bold/sub/superscript text
TagNI – Adds an <ni> tag after every heading

TagChecker – Checks the continuity of a paired tag, e.g. ,
TagHighlighter – Highlights all of the ranges a paired tag, e.g. ,
TagListBulletsAll [15.07.17] – Find all bullet lists and tag them
TagListLettersAll [15.07.17] – Find all lettered lists and tag them
TagListNumbersAll [15.07.17] – Find all numbered lists and tag them

FullPointOnCaptions – Finds captions and ensures they have a full point

HeadingTagAndFormat [02.06.18] – Tags and formats the chapter title
RedTagger [28.10.20] – Colours all tags red
StyleCoder [02.12.19] – Adds style codes to every paragraph
TagAPlus [27.05.21] – Adds a tag to the current paragraph, in bold and red

[bookmark: _Toc55981619][bookmark: _Toc55981717]21. Textboxes
SetTextBoxStyle – Applies style to all textboxes
TextBoxFrameCut – Removes textboxes and frames
ComboBoxAccept – Finds combo boxes and replaces them with the currently selected text

[bookmark: _Toc55981620][bookmark: _Toc55981718]22. Track changes
TrackChangeShowHide – Sets up track changes to taste
TrackChangeDisplaySelect – Cycles through track change display levels
TrackChangeDisplaySwitch – Switches track change displays: Simple <=> AllMarkup
MarkupModeSwitch – Switches between inline and in-balloon markup
MarkupDisplaySwitch – Cycles through track change display levels
AcceptTrackedFormatChanges – Accepts just the formatting track changes, leaving all other track changes
AcceptSpecificTrackChange – Accepts all occurrences of one specific track change
AcceptTrackingSelectively – Accepts track changes of specific author/editor
TrackChangeAccept – Accepts the track changes on the current line
TrackChangeReject – Rejects the track changes on the current line
TrackAcceptMoveOn – Accepts change and moves to the next
TrackSimplifier – Accepts certain types of tracked features
ChangeNotTracked – Changes (or add) some text, but don't track the change

MultiFileAcceptTrackChanges – Accepts all track changes in multiple files
MultifileTrackChangeReport – Creates a file of sentences containing TCs in multiple files

ShowHideAllTracking – Toggles showing both track changes and comments on and off
ShowHideTracksOnly – Toggles showing just track changes on and off

ConsolidateTracking – Turns an instance of split tracking into one single change

TrackChangeCounter – Reports the numbers of track changes, plus words/characters added/deleted

CopyAllEditedSentences – Copies all sentences that have tracked edits in them
TrackDateTimeList – Lists the date and time of all track changes

FandRdespiteTCsSelective – Does current F&R despite track changes (selective)
FandRdespiteTCsGlobal – Does current F&R despite track changes (global)

CompareNow – Creates an instant comparison of two open Word files

FindInDeletedText – Searches only the deleted (track changed) text

VisibleTrackOff – Visible reminder that track changes is off
VisibleTrackOff2 – Visible reminder that track changes is off – using different formatting
VisibleTrackOff3 – Visible track change reminder – using wiggly lines!
VisibleTrackOff4 – Visible track change reminder – using yellow background
TrackOnOffVisible – Switches tracking on/off with visible background
TrackOnOffVisibleMac – Switches tracking on/off with visible background (for Mac)
BackgroundColourOnOff – Switches background colour on/off

BackgroundColourOff – Remove background colour
BackgroundColourAllOff – Removes background colour

CommentAddToTrackedChanges [06.04.23] – Adds a blank comment to every tracked change in the selected text
HighlightAllTrackedText [15.04.22] – Highlights (and/or font colours) all tracked text
PunctuationTrackAcceptAll [16.02.24] – Accepts all track changes that involve punctuation
TrackChangeCountWords [18.01.24] – Checks the track changes to count words/characters added/subtracted
TrackChangeOptions [16.07.15] – Set up track changes to taste
TrackChangeReport [27.02.18] – Creates a file of sentences containing TCs
TracksInlineToggle [07.03.22] – Toggles track change deletions between bubbles and inline
TrackColourOff [04.09.19] – Switch off background colour from track on/off macro
ReviewPaneToggle [03.03.22] – Opens and closes the track change review pane

23. Information
AbstractAndKeywordCount [09.04.21] – Counts abstract word numbers and keyword items
CopySelectedForCompare [23.10.21] – Copies the selected text to a specified file

CountTwoPhrases [28.09.20] – Counts this and that word or phrase
CountWordsToCursor [29.01.18] – Counts how many words in the paragraph up to the cursor
CountCase – Count the numbers of upper and lowercase characters

FrequencyParagraphLength – Creates a histogram of paragraph length
FrequencyWordLength – Creates a histogram of word lengths
FrequencySentenceLength – Creates a histogram of sentence length
CountHighlightColour – Count how many times a highlight colour occurs

FullFileNameCopy – Copy the full file name of the current file to the clipboard
FullNameType – Types out the full filename of the open file

FeatureCounter [24.08.17] – Counts various feature of the current Word file (notes, shapes, text boxes, equations etc)
FontNameAndSizeReader [21.11.18] – Reads style font Name + any applied Name
FontNameSizeScanAndFix [13.03.23] – Assesses and lists (& optionally fixes) the font sizes & names
HighlightAllSentences [01.02.10] – Adds two font colours to show sentences
HighlightOddQuotations [25.05.20] – Marks all quotes + displayed text
LongParagraphCheck [25.03.20] – Colour long sentences
LongParagraphHighlighterChars [23.06.21] – Highlights all paragraphs more than a certain length
LongQuoteNext [01.08.20] – Jumps to the next long quotation
maxWordsInPara [03.03.13] – Count max number of words in a paragraph
MenuItemMaker [13.04.20] – Creates a histogram of paragraph length
MultiSyllableWordsHighlight [10.08.23] – Highlights words of 3, 4 or 5+ syllables
NTaddressCopy [08.02.24] – Reports the address of the folder holding the Normal template
NTaddress [26.06.20] – Locates your Normal template folder
PageCountBySection [03.04.21] – Counts the pages between section headings
ParaSentenceLengthHighlighter [16.05.19] – Highlights paragraphs with too many sentences
PhrasesInSentences [25.10.20] – Lists all sentences containing a give phrase
QuotationMarkErrorFinder [28.05.20] – Moves to the next mismatched double quotes
SymbolShowNumber [28.10.13] – Type out the 'unicode' of the symbol font character

[bookmark: _Toc55981621][bookmark: _Toc55981719]24. Odds and sods
SplitScreen – Splits the screen

WhatsAppTextFormat – Converts text from Word to WhatsApp formatting
ForumTextFormat – Converts text from Word to CIEP Forum and vice versa
DictaFRedit – Adds features to Word 365 Dictate, and cleans up it errors
CountDownVisible – Shows a statusbar and Big Text countdown to zero
OvertypeBeep – Sounds warning beep on overtype
OvertypeBeep2 – Sounds warning beep on overtype and gives visual clue
MaggyIt – Creates a Maggied version of the current file
CloneWordFile – Creates a clean copy of a corrupted file, including paragraph styles plus bold, italic etc.
CloneWithEquations – Creates a clean copy of a corrupted file, including formatted equations
TweetCheck – Highlights paragraphs longer than 140 characters
AutoCorrectItemsDeleteAdd – Optionally deletes all items, then adds new items
AutoCorrectItemsList – Lists all current autocorrect items
CountRemainder – Counts words below the cursor
CountRemainderSimple – Counts words below the cursor
AlphaHeadersOnIndex – Adds alpha headers to an index
MacroLauncher – Offers a list of macros to launch (was called MacroMenu)
MacroFetch – Fetches the macro named in the clipboard or at the cursor
MacroFetchUpdate – Updates an existing, preserving the keystroke
MacroNameToLink – Makes URL for macro name in clipboard or at cursor and puts in clipboard

CountChapterPages – Counts pages in chapters of the text
CountSectionWords – Counts words in sections of text between headings
TitlesShowHide – Toggles between light grey font colour text and full colour
TitlesReveal – Switches the next light grey font colour to full colour
FixedFontRed – Sets font to an 'almost' red font colour
FixedFontBlue – Sets font to an 'almost' blue font colour
FixedFontBlack – Sets font to an 'almost' black font colour
FixedFontSwitch – Switches font colour red > blue > black > red

Enigmatizer – Obfuscates/anonymises the current file

BinomialAdder [04.04.22] – Adds Latin binomials into a document
CopyFormattedTextNotesBoxes [09.02.19] – Creates a new document of the formatted main text + formatted notes text
DeleteBlankReports [12.06.19] – Delete any table containing a blank Teacher-comment
DeleteThisFileNOW [27.01.20] – Close file WITHOUT SAVING - BEWARE!!
DisplayWindow [23.10.20] – Displays copied screengrab of window
DocumentAdd [28.01.15] – Adds document at specific window size
DraftViewToggle [05.12.18] – Switches between draft view and print view
EmailQuoter [02.07.18] – Chops and indents quoted email
EmailSplit [02.05.20] – Splits a quoted email [not in book]
KeyBindings2 [12.04.13] – Add keybindings to macros on various keys
KeystrokesRestoreAll_Mac [26.07.17] – Creates keybindings from a list
NavPaneLoad [10.04.21] – Copies selected text into the F&R box
OpenMySize [03.11.17] – Opens the window to a particular size, position and magnification
PB_CleanUp [13.06.20] – Cleans up a file by F&R
RandomTextType [24.11.23] – Types out paragraphs of pseudo-Latin or English text
RandomTextTypeMac [24.11.23] – Types out paragraphs of pseudo-Latin or English text (Mac version)
SearchHierarchically [24.11.23] – Shell macro: Searches hierarchically for a character
SentencesToParas [17.05.21] – Splits all sentences into individual
SmartEditing [16.04.22] – Switches off Microsoft's so-called "smart" editing features
SpeakText [01.02.10] – Speaks current text
StrikeThroughFirstLastWord [25.10.19] – Underlines the first and last words of every paragraph
TheEmailFormatter [25.02.21] – Tidies up an email text and adds ">" symbols as quoting
EmailFormatter – Formats paragraphs in an email
WindowSize [05.02.15] – Size window how I like it
WordDisplay [30.03.14] – Type out word at big size
NTbackupDatedSimple [28.10.23] – Backs up the Normal template with date and time
NTbackupDated [18.01.24] – Backs up the Normal template and the VBA code with date and time

[bookmark: _Toc164352926]09 Textual analysis ____
(Preparing your brief or style guide)

When you are assessing a script ready to start editing or proofreading, there are decisions to be made about spelling, hyphenation, punctuation styles etc. Some of these might have been specified for you by the client, but in any case there will be others where it is best to find out what the author has done most often (though not consistently!) and run with that. I wrote these macros having had the experience of making a style decision based on chapter 1 of a book, only to find that, in chapters 2 to 20, the exact opposite convention had been used!

Making as many style decisions before starting to read can potentially save you a lot of time, so in this section we look at the main macros to help in that process.

The first macro, DocAlyse (document analyse), very quickly gives you a feel for a lot of the spelling and punctuation conventions.

Then there are a whole range of spelling analysis macros, including UK/US, -is-/-iz-, general spelling errors and variations in use of accents (see the overview in that subsection). Also included is ProperNounAlyse to list any similar-looking proper nouns (showing the frequency of each) so that you are alerted to possible misspellings.

Finally, there’s HyphenAlyse, which gives you a frequency list of all the words in the book that are (or might be) hyphenated.

If your book is in multiple files, you’ll also need to use the macro MultiFileText to scrape the text out of all the files to present to the analysis macros.

Hint: If you’re analysing large files, it would be a good idea to first run CopyTextSimple (or even CopyTextVerySimple for ProperNounAlyse or HyphenAlyse), in order to allow the macro to work on a file with little or no (in the case of CopyTextVerySimple) formatting for the macro to trip over.

To give you an idea of the sorts of times some of these analyses might take, and how much longer long files might take, here are some sample timings (in minutes):

	File size
	HyphAl
	WpairAl
	PNAl
	DocAl
	SpErList

	× 1,000
	
	
	
	
	

	50
	1
	1
	3
	0.9
	3.6

	100
	3
	3
	12
	1.1
	7

	200
	8
	12
	29
	2.5
	15

	400
	22
	42
	96
	3.6
	32

[bookmark: _Toc55977140][bookmark: _Toc164352927][bookmark: _Hlk163649142]Run all your analyses at one go
If you want to run a set of analyses all at one go, perhaps doing so overnight, or at least doing it while you’re making the supper of taking the dog for a long walk, then you can set this macro up to do your favourites.

Set up the first line of the macro for the set of analyses you want (in the order you want) and it does them.

myAlyses = "DocAlyse, HyphenAlyse, ProperNounAlyse, FullNameAlyse, SpellAlyse, CapitAlyse, WordPairAlyse"

If you want to see the progress, open VBA and do a Ctrl-G to open the Immediate Window. There you will see a timed list of what time each macros started.

In theory, it could be used to run any macros. However, in practice, the macros you run have to be adjusted so that if they are being run from MegAlyse, they know not to open message boxing saying things like “Do you REALLY want to run this macro?!”

There are currently seven macros that you can use (and they must all be dated 23.10.19 or later). If you want others, please ask me – it only takes a few minutes to adjust each analysis macro to make it link in with MegAlyse.

The macro needs somewhere to store a temporary file. This is specified by the line:

myFolder = "C:\Documents and Settings\Paul\My Documents\"

Instructions for setting this up are the same as for the IZtoIS macro; see: ‘IZ to IS spelling and vice versa’, below.

Added feature: it now also saves the results files in your temporary directory, but that is controlled by:

saveResultsFiles = True

Make it False if you don’t want it to save them automatically there.

Sub MegAlyse()

[bookmark: _Toc55977141][bookmark: _Toc164352928]DocAlyse
Mac users: This macro should work OK on most Macs. However, if (and only if) you get an error saying “Macro too long, or some such, then please refer to the section “Mac users start here, please”.

N.B. This macro ONLY ANALYSES THE MAIN TEXT, NOT FOOTNOTES, ENDNOTES OR TEXTBOXES. Please use CopyTextSimple first to include all the text.)

The aim of this macro is to help you to assess a Word document by counting the number of times the author uses various spelling, punctuation and formatting conventions.

To do this, DocAlyse creates a copy of the currently open Word file and generates a list such as this:

(My explanatory comments are added in italic but it’s the macro that has made all the zero item non-bold .)

(one to nine, 10 upwards or one to ten, 11 upwards – see Note 1 below)
ten	35
10	20

(commas in thousands)
nnnn	21
n,nnn	3
n nnn	–

serial comma	2
no serial comma	30

single quote	90
double quote	2

etc	19
etc.	1

et al	1
et al.	9
et al (italic)	–

i.e.	2
ie	1

e.g.	1
eg	1

(different formats for initials – see Note 2 below)
J. L. B. Matekoni	–
J.L.B. Matekoni		–
J L B Matekoni	17
JLB Matekoni	9

p/pp. 123	–
p/pp.123	13
p/pp 123	1
p/pp123	4

UK spelling (approx.)	37
US spelling (approx.)	1

-is- (approx.)	102
-iz- (approx.)	4

data singular	2
data plural	2

(alternative past participle spelling)
-rnt -elt	–
-rned -elled	10

fig	1
figure	8
Figure	1

Chapter		0
chapter	2

spaced units (3 mm)	3
unspaced units (3mm)	–

focus...	6
focuss...	–

co-oper...	–
cooper...	2

diacritics	3

Note 1: The logic behind it is that we're taught that conventions used might be:

1) one to nine, plus 10, 11, etc upwards

2) one to ten, plus 11, 12, etc upwards

3) (more in humanities rather than in sciences) to ninety-nine, one hundred, 101, 102, etc.

So the tests are aimed at elucidating the authors predominant usage.

The tests I use for (1) vs. (2) are to count (whole word) "ten" and "10".

For (3), I use:

~<[efnst][efghinorvwx]{2,4}ty|^&
~<[efnst][efghinuorvwx]{2,4}teen>|^&
~<eleven>|^&
~<hundred>|^&
~<ten>|^&
~<twelve>|^&

The first of those would erroneously pick up “weighty”, and possibly others , but none of the tests is intended to be foolproof – they give a general indication.

Note 2: The ‘JLB Matekoni’ option can get exaggerated in number because it will pick up things like: ‘the US Department of Energy’ and think that ‘US Department’ is a person with un-full-stopped initials.

Thiers Halliwell has sent me a set of medical abbreviations to add to DocAlyse. There are rather a lot, and if you don’t want them, it’ll slow down the operation of the macro, so I’ve taken the unusual step of putting it as a separate piece of code, which medics will need to copy and paste into the middle of the macro in the space indicated.

Some extra items have been added to DocAlyse, as follows.

A later addition was that it counts: OK, ok, Ok, okay – OK.

For percentages, it provides:
unspaced, e.g. 9%	2
spaced, e.g. 9 %	3
9 per cent	5
9 percent	3
nine per cent	1
nine percent	1

Then there’s edition/editor(s):
ed	2
eds	3
edn	4
ed.	4
eds.	2
edn.	3

For feet and inches (or minutes and seconds):
feet (straight) 9'	3
inches (straight) 9"	2
single prime: 9′	6
double prime: 9″	4

It already did a count of ‘proper’ ellipses against trios of full stops (periods), either spaced or unspaced, but I’ve now added (for proper ellipses only) a count of how they are spaced: before, after, both or neither.

This same count of spacing is also made for solidus (forward slash), em dash, en dash and hyphen, although I don’t, of course, count unspaced hyphens.

Sub DocAlyse()

Most Mac users will be able to use the ordinary DocAlyse, and that gives the largest amount of data. However, if DocAlyse throws up errors about ‘Not enough memory’, please try the following reduced feature versions (in this order):

Sub DocAlyseForMac()

Sub DocAlyseForThinMac()

Sub DocAlyseForVeryThinMac()

N.B. This next ‘macro’ is not a macro in its own right; it’s the extra bit to be inserted inside DocAlyse, at the place indicated:

Sub DocAlyseMedBits()

[bookmark: _Toc164352929][bookmark: _Hlk124606049]Like DocAlyse, but with user-selected targets
DocAlyse is, not surprisingly, geared towards English, but if you edit in other languages, you can do DocAlyse-like analyses in your chosen language by using this macro. The idea is that you choose a series of ‘things to count’, list them, and then run this macro. It goes through your list, counting all the word/phrases/part words etc., that you specify.

Here’s a dummy count list – it must start with ‘| CountIt’, so the macro knows which file holds your DocAlyse list (highlighted only for the explanation):

| CountIt

| This is a comment
the (LC only)|<the>
The (Initial cap)|<The>
the (any case, whole word)|¬<the>
the (any case)|¬the

et al|<et al>[!.]
et al.|<et al.

|| These lines are disabled
||sausage|¬sausage

And here’s a sample output using the above (dummy) DocAlyse list.
DocAlyseUser

| This is a comment
the (LC only)	80
The (Initial cap)	9
the (any case, whole word)	89
the (any case)	113

et al	–
et al.	–

Notes
1) For a line like ‘the (LC only)|<the>’, the green bit is what appears in the final analysis output, and the yellow is what is counted.

2) As you can see, ‘<the>’ is a wildcard find (the macro recognises ‘<’, ‘>’, ‘[‘, etc and switches wildcards on).

3) With ‘the (LC only)|¬the’, the macro sees the ‘bent pipe’ and switches to ‘any case’.

4) With ‘the (any case, whole word)|¬<the>’, the macro sees the ‘bent pipe’ and switches to ‘any case’. The ‘¬<the>’ isn’t a ‘proper’ wildcard Find, since wildcards are, by definition, case sensitive. This therefore is the macro using a fudge. It changes the Find to ‘<[tT][hH][eE]>’ to catch all possibilities.

5) Note that the counts for ‘LC only’ plus, ‘Initial cap’ do NOT equal those for ‘any case’ (80 + 9 ≠ 113). That’s because ‘¬the’ is not whole-word limited, so it will also count ‘other’, anthem’, etc.

6) Any line starting with ‘||’ is totally ignored in the counting process.

7) Lines starting with just ‘|’ are ‘comments’, i.e. they are reproduced in the final analysis output (as are blank lines).

8) As with DocAlyse, any counts that produce a zero result are greyed out, so as not to distract the eye.

General plea: If you create a DocAlyse list file for some particular language, please would you consider making it available to other editors? If you send yours in to me, I’ll put it on my website, for others to use. Thank you!

Sub DocAlyseUser()
[bookmark: _Toc164352930]Counting numbers as figures or as text
DocAlyse only counts ‘10’ or ‘ten’, plus spelt-out numbers from ‘eleven’ upwards, so if you want more information, this macro produces a result such as:

	Numbers as digits
	21

	Spelt-out numbers (one-nine)
	13

	Spelt-out numbers (ten)
	2

	Spelt-out numbers (eleven etc.)
	15

When counting numbers as digits, the macro allows you to specify the max number of digits to be counted: one only, one or two or one to three digit. This is set with maxFigs = 3 (or less) at the beginning of the macro.

It also tries to avoid, e.g. ‘22 September 1948’ or ‘12 hours’. This is set in:

noCount = "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec,"
noCount = noCount & "hou,min,sec,day,"

You can add words or subtract ‘units’ not to be counted, but it only counts numbers followed by a space, so it would ignore 22/9/48. (Not an infallible test, I know.)

Sub NumberTextFigureCount()

[bookmark: _Toc164352931]Analyse serial (or not) commas
DocAlyse will give you an approximate indication of whether the lists in the document have serial commas or not, but all it only checks lists that are made up of single words (fish, chips and peas), but it would not count “smelly fish, greasy chips and mushy peas”!

In any case, what is a serial (or not) comma? How about “I’d like some fish, please, and no peas!”

How could a computer tell the difference? Too difficult for macros.

So if DocAlyse’s count is too close to call, you have to search through for “ and ”, and read around each occurence, to decide whether or not each is a list and, if so, put a tick in your ‘Serial’ column or your ‘Not Serial’ column.

To speed up the process, I’ve written a macro that takes an area of text (the whole text or a selection), copies it out into a new file, and then highlights in green every “<word>, and” and in yellow every “<word> and”, and then it does the same for the “<word>, or” (green) and “<word> or” (yellow).

You can then use the FindHighlight macro to jump through, assessing them one by one, and putting ticks in your ‘Serial’ column or your ‘Not Serial’ column.

To offer more support, the macro also does the DocAlyse type assessment, checking single-word lists, and it reports a “Rough indication:”, asking you whether you then want it to continue and create a checking-file for you to trawl through.

Sub SerialCommaAlyse()

[bookmark: _Toc164352932]Analyse different formatting of centuries
(Video: youtu.be/P-6VdmT2BbE)

When I asked for ways in which DocAlyse could be extended, someone asked if it could count the different ways of formatting centuries, so I asked for a list of the different formats. This is what he sent me!
C19
C19th
C19th
Nineteenth Century
nineteenth century
19th Century
19th century
19th Century
19th century
XIXth Century
XIXth century
XIXth Century
XIXth century

To count all these formats would be far too difficult within DocAlyse, so I wrote a separate macro. It generates a table, like this:

	C19
	 2

	C19th
	 1

	C19th
	 0

	Nineteenth Century
	 1

	nineteenth century
	 1

	19th Century
	 3

	19th century
	 3

	19th Century
	 0

	19th century
	 0

	XIXth Century
	 0

	XIXth century
	 0

	XIXth Century
	 0

	XIXth century
	 0

Sub CenturyAlyse()

[bookmark: _Toc164352933]Analyse format of days and months
Someone wanted to know how often an author had used Mon, Tues, Wed(s) and Jan, Feb, Mar, compared to spelling them out. I realised that, as they are all proper nouns, ProperNounAlyse already gives you the frequencies of all these words in its proper noun frequency list (as opposed to its proper noun queries list).

This macro simply looks through that list and reports what it finds, ‘greying out’ words that aren’t used at all, e.g.

Mon . . . 2
Tue . . . 1
Wed
Weds . . . 4
Thu
Thurs
Fri . . . 4
Sat
Sun

Jan . . . 4
Feb . . . 4
Mar . . . 6
Apr . . . 4
May . . . 7
Jun . . . 4
Jul . . . 4
Aug . . . 4
Sep . . . 4
Sept
Oct . . . 4
Nov . . . 4
Dec . . . 10

January . . . 20
February . . . 10
March . . . 9
April . . . 12
May . . . 7
June . . . 10
July . . . 13
August . . . 10
September . . . 10
October . . . 9
November . . . 9
December . . . 9

So, to get this macro to do its tests...

1) Run ProperNounAlyse, but make sure it’s set to check words of three or more letters. At the beginning of the ProperNounAlyse macro, it must say:

minLengthCheck = 3

2) Of the two files that ProperNounAlyse generates, ignore the ‘Proper noun queries’ file and click in the ‘Proper noun list’ file instead.

3) Now run DayDateAlyse.

If you think of other proper nouns you want it to report on, you can just add the words into your copy of the macro:

myWds = " Mon Tue Tues Wed Weds Thu Thurs Fri Sat Sun X "
myWds = myWds & " Jan Feb Mar Apr May Jun Jul Aug Sep Sept Oct Nov Dec X "
myWds = myWds & " January February March April May June "
myWds = myWds & " July August September October November December "

myWds = myWds & " X Pete Peter Jennifer Jenny Jennie Albert Bert Bertie "

Just ensure that you follow the same format when adding extra items. The ‘X’s are just a way to put a blank line into the final list to make it clearer.

Sub DayDateAlyse()

[bookmark: _Toc55977143][bookmark: _Toc164352934]Analyse different types of lists
To be fair, that’s a bit of an overstatement. This macro doesn’t actually analyse the lists – that would be a pretty difficult task for a macro. Rather it runs through the whole text, copying all of the lists into a separate document. Then you have one succinct document that you can scan through, so that you can analyse the different types of lists.

Importantly, it also includes the paragraph immediately preceding a given list; in other words, it gives you the text that introduces the list. You can then compare the different ways in which the coming of each list is heralded by the author.

(N.B. This macro will doubtless miss some of the types of lists in your document; if so, please could you email me a sample of the list it failed to recognise. Thanks.)

Sub ListAlyse()

[bookmark: _Toc55977144][bookmark: _Toc164352935]Highlight possible errors with a/an
This macro tries to highlight all errors of the form: a orange, an pear, an university, a hour, a HTML, an UFO etc and also: a O, an P, a H, a S, an U.

Words like ‘university’ and ‘hour’ are simply exceptions, so I’ve dealt with them by listing them all at the beginning of the macro:

OKwithA = ",europe,european,once,one,uniform,uniformly,unified"
OKwithA = OKwithA & ",unique,uniquely,unit,unitarian,united,"
OKwithA = OKwithA & ",university,union,united,universe,"
OKwithA = OKwithA & ",universal,universally,unilateral,unilaterally,"
OKwithA = OKwithA & ",useful,usefully,useless,uselessly,user,"
OKwithA = OKwithA & ",usual,usually,,utility,utilities,utilitarian,"
OKwithA = OKwithA & ",utilization,utilisation,"

OKwithAn = ",hour,hourly,honest,honestly,honor,honour,honorary,"
OKwithAn = OKwithAn & ",honorarium,honorific,"

If you want to add others (e.g. if your client insists on ‘an hotel’!) then just add them to the list, being sure to keep the pattern of punctuation.

For acronyms, it highlights, say ‘a SME’, but with some acronyms, it depends whether you sound the letters or sound it as a word: ‘an RFI’ cf. ‘a ROM and a RAM’. So ‘a RFI’ is obviously an error, but ‘an RFI’, ‘an ROM’ and ‘an RAM’ might be wrong, so the macro highlights them in a less obvious colour (light grey).

Sub AAnAlyse()

[bookmark: _Toc55977145][bookmark: _Toc164352936]Reveal formatting and special characters
(Video: youtu.be/_fWD4sXNg5s)

When preparing to start a job, it can be helpful to get a feel of some of the formatting features that the author has used, and some of the special characters too. I tried to show some of these using DocAlyse, but it’s a bit of a blunt instrument, so this macro allows you to check the document more ‘surgically’.

It works by using highlighting to make the various features visible (so you might like to work on a copy of the file under test, rather than the original). It has a range of different features that you can highlight, and each time you run the macro, it removes all the existing highlighting and highlights the selected feature. Here’s the menu.

1 – Font size
2 – Font name
3 – Style
4 – Bold/italic
5 – Bold/italic not in a style
6 – Super/subscript
7 – Diacritics
8 – Various non-alpha characters (slow)
9 – Funny spaces
10 – Funny Symbol fonts

Once you’ve used one of these options to highlight something, you can use HighlightFindDown and HighlightFindUp to look through the text and see what’s what.

However, especially with the final four options, the macro might have highlighted things that you’re not interested in. If you know a little bit about macros, you might be able to tailor the macro accordingly (adjust to taste).

Another approach is to unhighlight just those characters, which then makes it easier to look more selectively through the remainder. For this, the HighlightSame macro is your friend, as follows.

You work your way through the highlights with HighlightFindDown, and then, when you decide one character is no longer of interest, run HighlightSame, and it will unhighlight all those characters throughout the text. (Make sure you use the 12/8/15 version or later because the newer version does unhighlighting as well as highlighting.)

Here’s some more detail on what the different options do. If there are other things that you want to highlight, please let me know.

1 – Font size highlights anything in a font size different from the Normal style.

2 – Font name highlights anything in a font other than the Normal font, e.g. in Arial, when the Normal font is Times New Roman.

3 – Style highlights any text that has a specific style applied, e.g. Heading 1.

4 – Bold/italic highlights anything in bold, italic or bold-italic, and its companion...

5 – Bold/italic not in a style does the same but then removes the highlighting from text in a specific style. This is aimed at cases where the body text is in Normal, but the headings are formatted using styles, e.g. Heading 1.

6 – Super/subscript is pretty obvious.

7 – Diacritics highlights any accented character, such as, ÄÃãÅåçÇéÉèÈêÊëËíÍìÌ.

8 – This aims to highlight any ‘different’ characters that might have been used. It works by first highlighting the whole text and then unhighlighting all alpha and numerics, and then unhighlighting any ‘obvious’ punctuation marks. You can specify any extra characters that you don’t want to be highlighted by using:

' Other characters NOT to highlight on Option 8
notThese = "\[\]*\@" & "_+=&%"

This option is a bit slow, so I’ve made it give you a beep to let you know when it has finished.

9 – There are a range of Unicode characters for different width spaces: en, em, thin, hairline etc. However, when some of these spaces are on the end of a line, the highlighting is invisible. Therefore I’ve added a marker to force Word to display the highlight. These temporary markers are removed next time you run the macro. You can use a different mark, if you prefer. The marker is specified at the beginning of the macro:

myMarker = "||"

10 – Funny Symbol fonts are what Microsoft gave us before Unicode was widely accepted, and they can be a bit of a nightmare, so it’s useful to know if your text contains any.

Sub FormatAlyse()

[bookmark: _Toc55977146][bookmark: _Toc164352937][bookmark: _Hlk157429554]Count words that appear as both singular and plural
This macro finds and makes a frequency list of all the words that appear in both singular and plural form. It copes with ‘box’ and ‘boxes’ but not ‘child’ and ‘children’.

Then you can colour all occurrences of the words in your list, with the second macro.

Sub PlurAlyse()

Sub PlurAlyseColour()

[bookmark: _Toc164352938]Examine formatting and applied effects and patterns
(Video:youtu.be/1NnppLuNyuE)
There might be some way in which you can do this via some menu(s) somewhere within Word, but if so I don’t know where. The idea is that, as you look at a bit of text, you think, “Is that a style? If so, what has been added ‘manually’ added to this text?”

So the style might be 14 point Ariel bold, but the author might have made it bold-italic for some reason, and/or they might have upped the font size to 15. And what about the highlight here? Is it really highlighting? Or is it actually a background pattern? (Try removing the ‘highlighting’ from the latter turqouise words. You can’t! Well, you can, but you’ll need to find the appropriate menu for patterns, or use the BackgroundColourOff macro.)

So with the StyleEffectDetector macro, you either select some text, or just place the cursor somewhere in the area of text whose formatting you are trying to analyse. Youo then get a report, which might say:
[image:]
If you click ‘Yes’ (or press Enter), the selection more one space to the right, and reports on that single character; if you click ‘No’, it moves one character to the left, and to escape from the macro, click ‘Cancel’, or click in the Close icon, top right.

If your selection contains, say, text of different added font size, or some added bold and some not, etc., it will tell you the selection is ‘Mixed’:
[image:]

Sub StyleEffectDetector()

[bookmark: _Toc55977147][bookmark: _Toc164352939]Spelling analysis
Overview – There are a lot of spelling-related macros available, so I thought a quick overview would be helpful, to set the scene.

N.B. The latest macro, SpellAlyse is not included in the summary (sorry, I haven’t got time), but it should be your first port of call for spelling as it is so powerful. PB.

UKUScount – Has the author predominantly used UK or US spelling?
IZIScount – For UK spelling, has the author predominantly used -is- or -iz- spellings?
	(For editing, you can use IStoIZ and IZtoIS to implement your decision.)
SpellAlyse – Complete spellchecking system
ProperNounAlyse – Alerts you to possible proper noun misspellings, showing their frequency.
	(For editing, FReditCopyPlus can be useful.)
HyphenAlyse – Shows the frequency of word pairs in hyphenated, two-word and single-word form.
	(For editing, HyphenationToFRedit can be useful.)
WordPairAlyse – Shows the frequency of word pairs that are never hyphenated (e.g. can not/cannot).
AccentAlyse – Compares words that use the same letters, but with different accents.
AccentedWordCollector – Collects all the accented words in a text
ConcordanceMaker – Creates a concordance list
AAnAlyse – Highlights a/an errors: a orange, an pear, an university, a hour, a HTML, an UFO, a O, an P, a H, an U.
DocAlyse – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e., etc, focus(s), benefit(t), Fig(ure), Eq(n).

Stretching the definitions of ‘spelling’ and ‘analysis’ a bit...
AlphabeticOrderChecker – Finds any suspicious non-alphabetism.
AlphaOrderChecker – Creates an alpha-sorted version of selected text showing changes
AlphabeticOrderByLine – Finds any suspicious non-alphabetism
DuplicatedWordsHighlight – Highlights things like ‘the the’ and ‘and and’ (easy to miss across two lines of text).
DuplicatedWordsFind – Jumps to the next duplicated word pair: ‘the the’ and ‘and and’ etc.
ing – Changes ‘splodge’ to ‘splodging’ or vice versa.
DictionaryFetch, GoogleFetch, OUPFetchPremium, PubMedFetch, ThesaurusFetch, WikiFetch – Looks up the current word on the relevant website.
LanguageSetUS, LanguageSetUK – Sets language for whole document.

[bookmark: _Toc164352940]High-speed spellchecking
Just a hint first...

Are you missing Word’s old spell-checker?

[image: No photo description available.]

Do you dislike Word’s new, whizzy ‘Editor’, with its ‘I know best’ attitude?! I have good news for you!

Open up the ‘Customize the Ribbon’ (by right-clicking on the ribbon), then click ‘Keyboard shortcuts... Customize’.

Press the A-key twice to bring the LH column to ‘All commands’.

Click in the RH column and press the T-key and scroll down to ‘ToolsSpelling’, and click on it.
Click in the ‘Press new shortcut key:’ and press the usual F7 key.
It will say that it’s assigned to ToolsProofing, but click ‘Assign’, then ‘Close’.
Now the ‘proper’ spellcheck will be back.
Enjoy!

(Is it the same on a Mac? If not, please would someone explain what to do? Thanks.)

Now the macro(s)...
(Video: https://youtu.be/JPJBF6mHq2M)

This system can be used either for editing or for proofreading.

If you want the highest speed of detection and correction (and rechecking) of spelling errors, then you will need first to learn the basic functionality of FRedit.

Even if you don’t use FRedit, it can still be used for proofreading, to alert you what spelling errors to look out for. (This will be explained at the end of this section.)

The other macro you will need for best effect is SpellingSuggest.

The basic method is as follows:

1) Run SpellAlyse:

This generates an alphabetic list of “spelling errors”, according to your (Microsoft’s) spellchecker. (The list is in two sections: lowercase-only words (i.e. those more likely to be real errors) and words with one or more capitals, which are less likely to be errors, since many will be proper nouns.

N.B. A new feature added in May 2023, is that if any of the text has a strike-through attribute applied, loike thiis, then any spelling errors in those words will be ignored.

If, when you run SpellAlyse, you have an exceptions list file(s) open (see below) it will not list as “errors” any of the words in the list(s).

2) Your job now is to work out which words in the errors list really are errors and which are exceptions – perhaps they are proper nouns or subject-specific terms.

To help you in this process you will see that SpellAlyse has also produced a second version of the errors list – with the frequencies of occurrence of each of the various words; this often gives a clue as to the nature of the “error”.

(Hint: Many editors use ProperNounAlyse before they use SpellAlyse because this alerts you to any misspelt proper nouns. This will make this stage of the job easier.)

If a given word is an error, you can use SpellingSuggest, which will automatically generate an item for use with FRedit: e.g. if you’re working through the list...

color|colour
colors|colours
colored
covariational
dangrous

...and you click in ‘colored’ and run SpellingSuggest and it will become:

color|colour
colors|colours
colored|coloured
covariational
dangrous

(only highlighted here to show what has changed)

If a word is an exception (e.g. “covariational”), just skip down to the next word.

If you decide that a word needs checking in context, as you read to chapters, you can draw your attention to it by adding a font colour (with ColourPlus/Minus) or a highlight colour (HighlightPlus/Minus). You’ll see why in (3).

3) With the cursor in the errors list (not in the original text), run SpellAlyse again. Sensing that this is a list, not an ordinary text, SpellAlyse will go through your annotated errors list and generate (a) a FRedit list and (b) a separate exceptions list.

4) During the editing process, you would add those FRedit list items to any other items you haeve, maybe for punctuation, hyphenation, proper noun errors, etc.

5) At the end of the job, use MultiFileText to generate a file of the whole book, open the exceptions list as generated in (3) and run SpellAlyse. This will generate a list just of any spelling errors that still remain, or that you have added, when typing in your changes – this re-checking can save your blushes!

If you’re wanting to use SpellAlyse when doing proofreading, load the PDF into Word and run the macro. Then you can look down the errors list, deciding which words really are errors; to these you can add a font colour, or to make it stand out more, a highlight such as bright green.

If you now run SpellingErrorHighlighter, all those errors will be highlighted, and after reading a section of the PDF, you can that you haven’t missed any of the spelling errors.

[bookmark: _Hlk67497587](N.B. If the job is in multiple PDFs, as long as you have Word 365, the latest version of MultiFileText macro can combine the PDFs into a single Word file for you.)

If the author has used a user dictionary (e.g. for technical documents or (speculative) fiction), you can get the author to send you their user dictionary, you just load it as a Word file and when you run SpellAlyse for the first time, it will recognise it as an exceptions list and so it will only list the non-user-dictionary ‘spelling errors’.

If you use Open, in Word, to open the dictionary, just tell it to use ‘Other encoding’, and you’ll get a word list for your exceptions list for SpellAlyse.

In fact, SpellAlyse has one more feature, though it’s probably rarely going to be useful. It will only be relevant on a job that has a good number of spelling errors but very few special words.

If you run SpellAlyse on the spelling error list before you start creating FRedit items, it will offer to go through all the lowercase spelling errors and convert them all to FRedit items, stopping only when it gets to the mixed-case words. You would then need to check through and correct any that weren’t appropriate.

The macro will suggest that you switch track changes on for this. If the changes have been tracked, then you can revert any change that was inappropriate.

The macro has the option to ignore numbers, or to “spellcheck” words that include numbers, e.g. ‘BS5261’.

This is set by the line:

ignoreNumbers = True

or False.

Sub SpellAlyse()

Sub SpellingSuggest()
[bookmark: _Toc55977148]
N.B. The latter has an extra feature: if the word you ask it to check is, say, “THankfully” (i.e. you mistyped it) then it corrects the mis-capitalisation for you. (Yes, I know there’s an option in Word to do that by auto-correct, but I don’t want it to ‘correct’ me when I type ‘FRedit’ to make it ‘Fredit’!)

P.S. If you use this macro a lot, by putting it on, say, F8, it’s even quicker than using, say, Alt-S. Yes, I’m a speed-freak, I know!
[bookmark: _Toc164352941]Check/correct current spelling
This macro allows you to immediately correct the spelling of the correct word. Click in the word, run the macro and the spelling is corrected. If the spelling is already correct, the macro bongs, to confirm the correctness of the spelling.

It will also correct PAul’s mistypings. BRilliant, as I do it a lot!

Sub SpellingCorrect()
[bookmark: _Toc164352942]Count IS/IZ spellings
This macro combines the basic ideas of the two IStoIZ and IZtoIS macros in order to count, fairly accurately, the numbers of -is- and -iz- type spellings. It can also, optionally, highlight them. You need to have the IS and IZ exceptions files set up in the same way as for IStoIZ and IZtoIS – for instructions see ‘IZ to IS Spelling and Vice Versa’.

Sub IZIScount()

[bookmark: _Toc55977149][bookmark: _Toc164352943]Count UK/US spellings
This macro counts how many words there are in UK spelling that are errors in US spelling and vice versa in order to give an indication of which spelling convention has mainly been used and how consistently.

If you want a quicker (less accurate) assessment, you can get it only to check those words that are equal to or longer than a certain number of letters. The example below of minimum word length, counts and timings for a 66,000-word book gives you an indication.

N.B. The macro will not count any words that have the strikethrough attribute applied, so you can ‘blank off’ the references list and any long quotations. (To strikethrough all quotations, you can use the QuotationMarker macro.)

Chars	UK	US	Mins
3	23	52	4.8
4	23	48	4.8
5	18	48	3.6
6	17	47	2.8
7	17	43	2.3
8	17	32	1.9

Sub UKUScount()

[bookmark: _Toc55977150][bookmark: _Toc164352944]Highlight UK/US spelling errors
In a text that is set to UK spelling, this macro highlights all the ‘errors’ that are in fact just US spellings, according to Word’s spellchecker, and vice versa. So in a UK English file it will highlight ‘color’ and ‘center’, and in a US English file, it highlights ‘colour’ and ‘centre’.

However, MS Word’s spellchecker thinks that ‘practicing’ and ‘licencing’ are correct UK English spellings, so the macro also highlight those. If you know of any other words that MS Word gets wrong, please let me know and I’ll add them to the macro.

Sub UKUShighlight()

[bookmark: _Toc55977151][bookmark: _Toc164352945][bookmark: _Hlk75330272]Spellchecking for proofreading and editing
Whether you’re editing or proofreading, the first macro to use is SpellAlyse. For proofreading, you can then use it to highlight all the spelling errors so that you can check that you haven’t missed any.

If you’re editing, you can use various tools to take the spelling error list and implement the necessary changes in the file(s) of the document you’re working on. The most obvious tool is FRedit, but there are a number of others that could prove useful. These are covered in the ‘Pre-editing Tools’ section of this book.
[bookmark: _Toc55977152][bookmark: _Toc164352946][bookmark: _Hlk67491659][bookmark: _Hlk38104427]High speed spellchecking
This system is intended for those who want the highest speed of detection and correct (and rechecking) of spelling errors, i.e. it was designed to work with FRedit. But even if you don’t use FRedit, it can still be used to alert you to spelling errors, and also to highlight those spelling errors in your text, if you combine it with SpellingErrorHighlighter. (This limited – but still effective – use will be explained at the end of the section.)

The other macro you will need for best effect is SpellingSuggest.

[bookmark: _Toc164352947]Spellchecking for proofreading
(Video: youtu.be/6F_yT1MIW_Q)
(Video: youtu.be/iESM6OaGBm4)

[An important update to the SpellingErrorLister macro (Oct 2019) is that you can now put a list of ‘spelling errors’ (according to Word), at the end of the document, that are actually ‘OKwords’, as far as this document is concerned:

OKwords
abelian
bijection
cohomological
etc.

(They don’t need to be in alphabetic order.)

As the macro checks the spellings of each word, it also checks in the OKwords list. (note: there’s no space in ‘OKwords’). This is really useful for doing a repeat spellcheck at the end of a job. It also works well with PDFHyphenRemover + PDFHyphenChecker, which automatically generates an OKwords list.]

For proofreading, probably all you want to do is to highlight all the possible spelling errors. Then, after you’ve read the text, you can go back and compare with the highlighted file, to make sure that you haven’t missed any of the spelling errors (a salutary exercise, I find!).

Word’s spelling checker can put a wiggly line under all the ‘spelling errors’, but these are the ones that it thinks are errors. You know that, in your field of work, say ‘cohomological’ and ‘bijection’ are perfectly acceptable, so you don’t want them highlighted; and equally, you don’t want lots of proper nouns highlighted. You can solve this problem by using macros: SpellingErrorLister and SpellingErrorHighlighter.

But before you can use macros to check the spelling, if your text is provided as a PDF file, you will first have to convert it into a Word file. There are many different ways of doing this (as a quick search on the web will reveal) but because it’s just the spelling we’re interested in, it may well be sufficient to simply copy the entire PDF (Ctrl-C) and paste it into a new Word file (Ctrl-V) – or maybe use PasteAsPureText. (And then you might want to use PDFHyphenRemover + PDFHyphenChecker.)

Listing the errors – SpellingErrorLister creates a complete alphabetic list of all the different ‘spelling errors’ (according to Word’s spell-checker) that occur anywhere in a text.

(On a big file, this can take quite a few minutes, maybe 6–12 minutes for a 100,000-word book. The status bar should show you the progress, and if you do want to stop the macro running, you should be able to do so by pressing Ctrl-Break, and then select End, as opposed to Debug. However, Word does sometimes ignore Ctrl-Break on a hard-working macro. But I can almost guarantee that if you click hopefully on the screen, Word will crash! In other words do not click on the screen.)

(If your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP PRESS! I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard – press Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’.)

The list that SpellingErrorLister creates might start something like this (a UK English file):

SpellingErrors

acteylene
adjoint
analyze
analyzed
castilated
cill
clearnd
contractural
crainage
cranage
crosswall
crosswalls
develpments

Clearly, some of these are spelling errors (acteylene, analyze(d) etc), while others might be specialist words (adjoint, cranage) that are perfectly correct. Only you, the intelligent human, know which is which, so your job now is to highlight (in any colour you like – say green) the actual errors, or those that might be an error depending on the context (say light grey):

SpellingErrors

acteylene
adjoint
analyze
analyzed
castilated
cill
clearnd
contractural
crainage
cranage
crosswall
crosswalls
develpments

Highlighting the errors – If you save the spelling errors list by using F12, it will offer the filename ‘SpellingErrors’, so save it with that name and then run SpellingErrorHighlighter, it will look for an open file with the filename ‘SpellingErrors’ and then work its way down the list, highlighting all those words in you file in the same colours that you have used in the list.

In fact, SpellingErrorLister creates the list of ‘errors’ in two parts, the second one starting, for example:

Abrusci
Adlung
Agranovich
Altand
Altland
Ambrosch
Appl
ASI
Athanasopoulos
Azumi
Baldo
Bao
BARFORD
Barford
Bässler

These are probably proper nouns and won’t need highlighting, so listing them separately means that you don’t need to look quite so intently through them, when trying to spot the words that are spelling errors.

N.B. You can use this macro on any Word file, and it will, in fact (a) check and highlight all the text including footnotes and endnotes – but not textboxes – and (b) ignore (i.e. not highlight) any text, such as reference lists, that are struck through, like this.

Highlighting errors in textbox text – If highlighting spelling errors in textboxes is important, then you can (a) first use BoxTextIntoBody to copy the textbox text into the main body of the text, (b) first use MultiFileText – you just give it a ‘list’ of the single file you want to work on, or (c) do the highlighting by using FRedit – simply put ‘| Textboxes = yes’ at the beginning of the FRedit list.

Technical details – Some PDF to Word conversions will give you: B¨assler, Br´edas, It^o etc. The macro will correct these to: Bässler, Brédas, Itô. This conversion is set up at the beginning of the macro, so hopefully if you get any more different ones, you’ll be able to work out how to add them to the list:

myFind = "á,é,ä,ë,ö,ü,ô"
myReplace = "á,é,ä,ë,ö,ü,ô"

The macro is already aware of ligatures: ﬀ, ﬁ, ﬂ, ﬃ, ﬄ, and will change them to separate letters. (That said, later versions of Word – certainly Word 2010 – recognise ‘conﬂict’ as correctly spelt, even though it here uses an ﬂ ligature.)

Sub SpellingErrorLister()

Sub SpellingErrorHighlighter()

[bookmark: _Toc55977153][bookmark: _Toc164352948]Spellchecking for dual languages
(https://youtu.be/-9UELiY7ZJk)

Having talked to some translators, they expressed the problem of handling two languages in the same document – how do you spellcheck them?!

Solution 1: If the areas of text in each of the two languages are distinct, you can apply a strike-through to the text in one language and spellcheck in the other language using SpellingErrorLister and SpellingErrorHighlighter, and then reverse the process for the other language.

Solution 2: This is not infallible, but I have produced a version of SpellingErrorLister, that is set up so that it checks the spelling in the two chosen languages, and it only lists the word as a spelling error if it is an error in both languages.

Can you see the flaw?

Suppose there’s a French phrase, “dans votre propre pays” which appears as “dans votre proper pays” then the macro will not report it as a spelling error, because “proper” is OK in English.

But hopefully the macro will still help you to spot most of the spelling errors, and it will still save a lot of time.

(If you need the same thing for three language, please let me know, and I’ll extend it.)

Sub SpellingErrorListerBilingual()

[bookmark: _Toc55977154][bookmark: _Toc164352949]Checking for misspelt proper nouns
(Video: youtu.be/JOTUvQAu-uo and youtu.be/PB0hXA_1tRo)
(Latest video: https://youtu.be/-kFHpFY6AV4)

Hint: If you’re analysing large files, it would be a good idea to first run CopyTextSimple (or even CopyTextVerySimple), in order to allow the macro to work on a file with little (or no) formatting for the macro to trip over.

This macro makes a list of all the proper nouns (well, words with an initial capital) that appear in the text, and shows the frequency with which each occurs. It then goes through them all and uses a whole range of different tests, in order to find pairs (or groups) of words that might possibly be alternative spellings of one another.

If the macro finds, say, Beverley and Beverly then alphabetically those are going to be next to one another in the list but if it finds, say, Barnham and Byrnham then they would be further apart. So I’ve used random colours and different attributes, like underline and strikethrough for the pairs, so that you can more easily spot which word it thinks might be a corruption of which other word.

(In the lists, what are the highlights, italic etc for? Read on...)

So if you see a word and can’t see its matching pair immediately on screen, memorise the attributes (e.g. red highlight and bold text) and scroll further down. However, if it’s in the Os, say, you don’t need to go into the Ps because the macro only compares words within each alphabetic section by the initial letter. So, no, it would not find Allsworth and Ullsworth, sorry – the macro is complex enough as it is! (This was probably my most tricky-to-write macro ever.)

So the macro produces some useless information, but if you look through the list, you’ll hopefully be able to pick out a few gems, such as these from one of my earliest uses of this program:

Brosseau . . . 3
Brousseau . . . 2

LeJeune . . . 4
Lejeune . . . 1

Norwich . . . 5
Nowrich . . . 1

Shirioshi . . . 1
Shiroishi . . . 1

I would never have spotted Shiroishi and Shirioshi at opposite ends of a 100,000-word book, and I find that clients and authors are mightily impressed when you notice such things – but they don’t need to know that it wasn’t actually you that picked them up! :-)

If the macro finds, say, Beverley and Beverly then alphabetically those are going to be next to one another in the list but if it finds, say, Barnham and Byrnham then they would be further apart. So I’ve used random colours and different attributes, like underline and strikethrough for the pairs, so that you can more easily spot which word it thinks might be a corruption of which other word.

[bookmark: _Hlk37905990][bookmark: _Hlk37905538]I’ve also now, in addition to the total list of all the proper nouns, produced a cut-down list, where it’s easier to spot the pairs (the added comments give an indication of which items are paired with which – as also indicated by their highlight colours):

 	AAnAlyse . . . 2	= H		The pair that goes with this is...

 	Aims . . . 1	= E
 4 = 	Alexander . . . 3	= D
 4 = 	Alexandra . . . 1	= D

 	Also . . . 2	= G
 5 = 	Altand . . . 1
 5 = 	Altland . . . 2
 	Alyse . . . 1	= G
 	Amis . . . 1	= E
 	Analyse . . . 1	= H		...right down here, but the highlight , and letter ‘F’, are pointers for you.

* 	Angquist . . . 3	= F
* 	Ängquist . . . 1	= F

 	Arial . . . 1	= A
 	Ariel . . . 4	= A
 	Bald . . . 1	= H		And the pair of this one...

 	Barford . . . 4
 	BARFORD . . . 2
* 	Belanger . . . 2
* 	Bélanger . . . 1

 	Black . . . 5	= E
 1 = 	Blah . . . 1
 1 = 	Blau . . . 1
 	Block . . . 2	= E
 	Bold . . . 3	= H		... is down here.

So if you see a word and can’t see its matching pair immediately on screen, memorise the attributes (e.g. red highlight and bold text) and scroll further down. However, if it’s in the Os, say, you don’t need to go into the Ps because the macro only compares words within each alphabetic section by the initial letter. So, no, it would not find Allsworth and Ullsworth, sorry – the macro is complex enough as it is! (This was probably my most tricky-to-write macro ever.)

Long files – If you have to test a file of more than about 250–300k words, the only thing you have to beware of is Don’t touch the mouse! It sounds silly, but I have discovered that even moving the mouse over the active windows while a macro is running can cause the macro to paste the text that it’s working on into the wrong file! So when I run a long analysis, I move the mouse to the far right, away from the working windows.

N.B. As with many of my macros, if you apply the strikethrough attribute to a section of text, the macro does not include it in this analysis.

Options:

includeAcronyms = True

This means this it will spot, say, an OECD/OCED error. But if your text has a lot of headings in all capitals, these could be quite a distraction, so you could change this to False.

minLengthCheck = 4

The aim of is option should be obvious, but I’ve never had a job full of ‘four-letter words’ that might have been a distraction, but you could increase (or decrease it).

Problem with ‘funny’ vowels
If the diacritics in your document have unicode values of more than 255, such as ā, here’s a workaround:

1) Use CopyTextSimple to create a pure-text version of your document (that’s good practice, anyway).

2) Run this FRedit list:

ā|æ
Ā|Æ

3) Run ProperNounAlyse.

So, if you have a word such as Theravada/Theravāda then it will be listed in the query list as:

Theravada . . . 1
Theravæda . . . 4

And if the text has other ‘funny’ vowels, i.e. with unicode values greater than 255 (you can check by using WhatChar), you’ll have to extend your FRedit list, choosing any other sub-256 vowel instead.

Sub ProperNounAlyse()

[bookmark: _Toc164352950][bookmark: _Hlk57722908][bookmark: _Toc55977155]Checking for spelling variants of ‘special’ words
This macro is rather like ProperNounAlyse; indeed, it uses that macro, so it won’t work unless you have ProperNounAlyse loaded in your Normal template.

The idea came from an editor of science fiction, where they had a number of made-up words, and wanted to check that the spelling was consistent throughout the book. However, this same macro could possibly be applied to detect spelling variations in technical words, such as chemical compounds.

The principle is to collect all words not contained in Word’s own dictionary (i.e. “spelling errors”) and turn them into “proper nouns” and then run ProperNounAlyse, which would then points up possible spelling variations in these “proper nouns”.

The macro allows you to set the minimum word length that you want tested:

minLen = 5

Sub SpecialWordSpellAlyse()

[bookmark: _Toc164352951]Frequency list of full names
(Video: youtu.be/PB0hXA_1tRo)

This macro is mainly aimed at checking for inconsistency in people’s full names, including those with full first names, and those with initials (or both), but it is useful for any multiple-word proper nouns.

It provides the list of names twice: once sorted on first name, then sorted on last name.

	A Pninian
	1

	Al Cook
	6

	Alexander III
	1

	Alexander Petrovich Kukolnikov
	1

	Alexandra Smith
	1

	Alissa Zinovievna Rosenbaum
	1

	Allan Pryce-Jones
	3

etc...

	Adamovich, Georgii
	1

	Ahvnue, Cleef
	1

	Aims, Divergent Literary
	1

	Amis, Kingsley
	1

	Answers, AR
	8

	Answers, Ayn Rand
	2

	Aykhenvald, Yuri
	1

etc...

From my experience, this macro is most useful if you have run ProperNounAlyse first, and corrected any misspelling of proper nouns generally. This then focuses the attention of this macro into combinations of correctly spelt names.

When you run the macro, it gives you the option to includes names with initials or not.

As with many of my macros, if you apply the strikethrough attribute to a section of text, the macro does not include it in the analysis.

ProperNounAlyse used to have the facility for double names, but it was really slow, so I’ve taken it out. In any case, as I’ve said, it’s more effective if you correct the proper nouns first.

Sub FullNameAlyse()
[bookmark: _Toc55977156][bookmark: _Toc164352952]Preferred spelling analysis
If you have a list, in a Word file, of various words where you have a preferred spelling, this macro will check through all the words in the document, to try to find words that might be alternative spellings, which will then need correcting.

You can have different lists for different clients, so just open the list you want for the current job, click in the target document and run the macro. (After a considerable time, possibly) it will produce a list like this:

achilies . . . 1		(achilles)
aegues . . . 1		(aegis)
arachne . . . 4		(archon)
argonuats . . . 1		(argonites)
asopus . . . 4		(asopos)
athana . . . 1		(aether)
baleneion . . . 1		(balaneion)
change . . . 4		(changer)
chimeera . . . 1		(chimera)
chiron . . . 1		(cretan)

Some will indeed be spellings you will need to change, but (as with ProperNounAlyse) it will thrown up ‘finds’ that you will know you can ignore.

N.B. This macro actually uses the code of ProperNounAlyse to run, and so you need to ensure that you have, in VBA, a copy of ProperNounAlyse dated Feb 2024 or later.

Alternative approach (my preferred approach!)
Personally, the approach I would use is a very long FRedit list with corrections of all the possible spellings that I might ever want to change (for a given client):

Beverly|Beverley
Boadicea|Boudica
¬burnt|burned
¬formulae|formulas
¬porage|porridge
¬radii|radiuses
¬yoghurt|yogurt

The list can be as long as you like. It might mean that FRedit takes 30 seconds to run, instead of 2 seconds, but finding preferred words from a list seems quite time-consuming to me.

Sub PreferredSpellingsAlyse()

[bookmark: _Toc164352953]Checking the abbreviation of genus+species names
This macro looks through all the genus+species names (if they are in italic) and checks that the first occurrence is full, not abbreviated, and that thereafter they are abbreviated.

If they are OK, they get a grey colour, but if they are in error then they are either yellow or green, as a warning.

However, if you set doAbbreviate = True at the beginning of the macro, then it also abbreviates them for you.
Also, if it spots an abbreviated species it hasn’t met yet, it highlights it in yellow, but it also remembers it. Then, when the full version of that same species appears, it gives it another warning colour (red) because this then has to be related (by you!) to its yellow equivalent.
Sub GenusSpeciesAlyse()
[bookmark: _Toc164352954]Finding similarly spelt words
Run this macro (it takes quite a long time) and it searches through all the words in the file, seeking to find words that might be alternative spellings of one another:

 	goddeses . . . 1	= G
 1 = 	given . . . 4
 1 = 	gives . . . 2
 	goddesses . . . 1	= G
 1 = 	greek . . . 1
 1 = 	green . . . 2
 	hesiad . . . 1	= F
 	hesiod . . . 1	= F
 1 = 	highlighted . . . 6
 1 = 	highlighter . . . 1
 1 = 	humor . . . 1	= A
 1 = 	humour . . . 1	= A
 7 = 	operat . . . 6	= G
 7 = 	operate . . . 1	= G
 	paseidan . . . 1	= F
 	poseidon . . . 1	= F

I’m not sure how effective it is in your workflow, but it’s there if you want to try it out. As with ProperNounAlyse (on which it is based), just click in the document under test and run the macro… then go and walk the dog!

SimilarWordsAlyse()
[bookmark: _Toc164352955]Variations in capitalisation
(Video:youtu.be/r6PKbwbbSHo)

The CapitAlyse macro lists and finds the frequency of all the words that occur sometimes with an initial capital, and sometimes not. It was aimed at the jobs I do for the construction industry, where authors tend to refer to ‘the Architect’ and ‘the Manager’ (but never ‘the Bricklayer’!), so it’s helpful to know how often they use each form, so I can decide how best to impose consistency.

Yes, you say, but what about the initial capital that occurs at the beginning of every sentence?! I’ve tried to take account of that, as you can see in the extract below of some of the results. The ‘(+4)’ on ‘Ancient’ means that the word also appears four times as the lead word in a sentence.

Yes, you say, but then what about all the initial capitals that occurs in headings?! I’ve tried to take account of that too by deliberately ignoring those words that occur in bold and/or italic. OK, this is a rather inexact science, but it’s a difficult attribute to analyse, and I’ve done the best I can. It’s up to you, to look through the list, see if there’s anything that might be significant, and then use FindSamePlace to jump straight from the list to the first occurrence of that word in the text.

The other thing I’ve done to try to reduce the number of insignificant words is to list some words at the beginning of the macro that are to be totally ignored (and you can add to that list, of course):

ignoreWords = ",After,All,Although,Also,An,And,As,At,By,For,From,If,In,It,"
ignoreWords = ignoreWords & "Of,On,Our,The,This,Those,There,These,They,Up,We,"

Looking through the list (especially with hindsight) I can say, “Aha! it looks as if I’ve got references to both ‘Bronze Age’ and ‘bronze age’!”

age . . 3
Age . . 4

ancient . . 18
Ancient . . 18 (+4)

aqueducts . . 1
Aqueducts . . 1

assessment . . 4
Assessment . . 1

authority . . 10
Authority . . 1

baray . . 3
Baray . . 3

book . . 1
Book . . 2

bronze . . 2
Bronze . . 4

century . . 4
Century . . 1

chapter . . 11
Chapter . . 3

The time taken for any document will depend not only on the total number of words, but also on the number of different capitalised words that need to be counted, but the times below might give you some idea what to expect.

If you want to watch progress, there’s a line on the status bar, but it’s not easy to see, so if you open VBA and open the Immediate Window with Ctrl-G, the indication there is much clearer.

27 kwords	0.4 min
54 kwords	0.9 min
108 kwords	5.5 min
210 kwords	36 min

Sub CapitAlyse()

[bookmark: _Toc55977157][bookmark: _Toc164352956]Find and count repeated phrases
(Video: youtu.be/PB0hXA_1tRo)

The CatchPhrase macro scans your document to find if any phrases are repeated and, if so, it checks how many times that phrase occurs. You end up with lists such as (searching for five-word phrases):

	is a measure of the 3
	this is a case of 4
	of protons and neutrons in 2
	it can be shown that 5
	weighing in at a few 2
	gold and silver and platinum 2
	along with the rest of 2

However, you can specify that unless a phrase occurs more than a certain number of times, you don’t want to know, so if you had specified 5(4), it would search for five-word phrases and only report those that occur four or more times:

	this is a case of 4
	it can be shown that 5

The same macro can also be used for spotting any sections of text that have been accidentally repeated. For this, you just specify, say, 25. This means that if any section of 25 or more words is repeated, it will tell you. You can then use any of my search macros to get back and check the context of those two occurrences.

So, to specify what searches you want to be done on your text, you give it a list such as:

	25, 6(4), 5(8)

This means is that the macro will first do a test for 25 words, reporting any and all it finds. Then it will look for six-word and five-word phrases, but it will only report those that occur a minimum of four times or eight times, respectively.

To add to the flexibility, I’ve set up the macro so that it gives you a menu of three different sampling regimes:

a = 25, 6(4), 5(8)
b = 6(3), 5(8), 4(10)
c = 7(3), 6(5), 5(10), 4(15)

and you can select a, b or c (but these regimes are set up at the beginning of the macro, so you can adjust them to taste).

Also, when you run the macro, instead of a, b or c, you can type in 8(4) or whatever, and it will just do that one test and stop.

Note that there’s not a lot of point in searching for really long phrases because Word can only search a maximum of 255 characters, so that’s about 35 words. Anyway, if there is a 20- or 25-word phrase repeated, you know immediately that it needs checking in context!

As you can imagine, checking the whole of a document can take a fair bit of time, so to help make the search faster, it creates a copy of the text – just the words plus hyphens, commas and apostrophes (which it replaces with temporary text-codes) and all the words are changed to lowercase.

It can take quite a while to create this text-only version of your file, so it’s worth saving it, in case you want to do some more tests later. Also, it’s probably worth doing some trial runs on subsections of the text, just to get an idea of how long it’s going to take – for a big text, you can always run it overnight.

So it’s worth trying relatively short sections of text first – say, 5000 or 10,000 words – to get a feeling of how fast (or slow!) the macro is. The following speed test results will give you an indication:

10,000 – 80 s
25,000 – 6 min
50,000 – 19 min
100,000 – 60 min

So as you can see, it’s increasing by a bit less than the square of the number of words:

	25 −> 50	19/6 = 3.2×
	50 −> 100	60/19 = 3.2×

i.e. each doubling of the number of words takes a little less than four times as long.

But when the macro runs, along the status bar, it reports what’s going on and, once it has found its first repeated phrase, it then tells you what time it thinks it will finish that run (e.g. ETA: 10:15 – “It’ll be finished about quarter past 10”).

But note that the ETA it gives you is for that particular number of words in the phrase, not the overall finish time for your whole set of tests. And it’s important to note that the more repeated phrases it finds, the longer it will take, so searching for shorter phrases takes longer, as these results show:

	30 words	20 min
	10 words	25 min
	6 words		42 min

This is simply because, for shorter phrases, it’s going to find lots more of them. (However, I have since improved the counting speed, so the difference between searching for longer phrases and shorter phrases will be less.)

There is also now an option to run a quick test, to estimate the likely time it will take to do one run, i.e. the 20 minute speed in the above list.

For the speed freaks among you: To get the highest possible speed, you need to have as little as possible of the text showing on the screen. So, first you can reduce the size of the window that contains your file. It can go down very small, but it’s best to make it long and thin, so you can see the macro’s progress reports on the status bar.

But you can get up to 20% extra speed by letting the macro make the window totally invisible! To do this, at the beginning of the macro, you set goExtraFast = True. But because the Word windows are invisible, you can’t see the progress indication, so to use this option, it’s worth opening the VBA window and clicking Ctrl-G. This opens the Immediate Mode window, in which the macro’s progress is also reported.

The three control buttons at the middle top of the VBA window – start, pause and stop (like those on a DVD player) – can be used to control the macro. However, if you stop in the middle of a run – perhaps because it’s taking too long – you’re left with an invisible version of Word. Never fear! Simply run CatchPhrase again; it will see that Word is invisible, switch it back to visible again, and then stop – it won’t do another actual run of the tests.

Sub CatchPhrase()

[bookmark: _Toc55977159][bookmark: _Toc164352957]Spellings with varying accents
(Video: https://youtu.be/h0oG3jWM8n8)

(This is, in a way, mis-named: by ‘accent’ I mean any alphabetic character other than the 26 ‘normal’ characters.)

This macro draws your attention to any inconsistencies, where a word containing accents (or any other special characters you’re interested it) is spelt differently in other parts of the document, e.g. facade/façade, cafe/café, déjà vu/deja vu.

Note that it doesn’t list all accented characters (but see the following macro), only those that occur with alternative spellings, i.e. potential inconsistencies.

The macro generates a list like this:

cafe . . . 2
café . . . 6
deja . . . 1
déjà . . . 2
facade . . . 2
façade . . . 4
Lopez . . . 1
López . . . 3
México . . . 1
Mexico . . . 82
Monsivais . . . 3
Monsiváis . . . 1
Zlcalo . . . 1
Zócalo . . . 8

If you want to add any extra ‘funny’ characters, they can be added to this list at the beginning of the macro:

allAccents = "áÁàÀâÂäÄÃãÅåçÇéÉèÈêÊëËíÍìÌîÎñÑóòÒôÔöÖõÕøØßúÚùÙûÛüÜýÝÿŸğ"

Unfortunately, you can’t just add characters such as ‘ğ’ (unicode 287) into this list (as I’ve done above). Because VBA doesn’t recognise non-ASCII unicode characters, so I’ve now added an option to include a range of ‘Central European’ characters, including the ‘ğ’.

Sub AccentAlyse()

[bookmark: _Toc55977160][bookmark: _Toc164352958]List all words containing accents
(Video: https://youtu.be/h0oG3jWM8n8)

(This is, in a way, mis-named: by ‘accent’ I mean any alphabetic character other than the 26 ‘normal’ characters.)

Maybe before you run the AccentAlyse macro above, you might like to have a list of all the words in your text that contain at least one accent. This macro creates a list of all the words that contain accents, multiple words occurring in the list multiple times, so you can see any commonly used words, but then it offers to remove duplicates, if you just want a list of which accented words it contains.

Sub AccentedWordCollector()

[bookmark: _Toc55977161][bookmark: _Toc164352959]List all words = a concordance
This macro generates and alphabetic list of all the different words that occur in a document. It also, optionally sorts the list by length, so you can look at the longest or shortest words.

The options are:

minLength = 4
sortByLength = True
lengthAscending = False

The first sets the minimum word length that it looks for, so that in this case it only lists words of four or more characters.

The second asks whether or not also you want a separate list of the words, but in length order; and finally should that list be shortest first or longest first.

Sub ConcordanceMaker()

[bookmark: _Toc55977162][bookmark: _Toc164352960]Highlighting duplicated words
Word’s spellchecker (certainly in recent versions of Word) will throw up occurrences such as “the the”, asking if you want to correct it. So, if you want to draw such things to your attention, you can use this macro to highlight them.

One editor asked if this could be extended to two words and then three words, e.g. “he said he said” or “as it were, as it were.” So I’ve added that to the macro (it ignores punctuation between the repeated phrases).

N.B. This macro is based on a very ingenious find and replace worked out by Douglas Vipond of Canada. Many thanks, Doug!

Sub DuplicatedWordsHighlight()

And as the highlighting is done by F&R, you can do it instead with FRedit.

| To catch “the the” etc
~(<[a-zA-Z]{1,})[.,\!\?:;]{1,}\1[.,\!\?:;]|^&

| To catch “he said, he said” etc
~(<[a-zA-Z]{1,}^32[a-zA-Z]{1,})[.,\!\?:;]{1,}\1[.,\!\?:;]|^&

| To catch “as it were, as it were.” etc
~(<[a-zA-Z]{1,}^32[a-zA-Z]{1,}^32[a-zA-Z]{1,})[.,\!\?:;]{1,}\1[.,\!\?:;]|^&

An alternative solution to this problem is a macro that jumps to the next duplicated word, so that you can look at it and, if necessary edit it there and then. However, you need to have one macro for each of the one-word, two-word and three-word cases.

Sub DuplicatedWordsFind()

Sub DuplicatedWordsFind2()

Sub DuplicatedWordsFind3()

[bookmark: _Toc55977164][bookmark: _Toc164352961]Page numbering PDFs
[bookmark: _Hlk54539937](Video: https://youtu.be/d_koGeFckp8 and https://youtu.be/CwYiEpPMKhk)

(N.B. This macro is ONLY useable if you take the text out of your PDF by using the Select all–Copy–Paste method. If, instead, you create your Word version of the PDF by ‘loading’ the PDF directly into Word, the conversion, very helpfully, ignores page boundaries, in order not to create two paragraphs of any paragraphs that are split across pages. Useful! Except that this it means you ain’t got any page numbers on which these techniques here depend!)

This macro searches for either page number 1 or a page number you type in from the keyboard; however, if you place the cursor at a particular number, it will offer you that number as default when asking you for the page number to start from.

At the beginning of the macro, you set whether the page numbers appear in the header (True) or the footer (False):

numbersInHeader = True

Also, to help it work out where to look for the page number, you tell it whether to look always to the right:

allNumbersAtRight = True

of change it to False, if the numbers are on alternate sides.

In most cases, according to convention, odd numbers are to the right, but if in your job the even numbers are to the right, change to:

evenNumbersAreOnLeft = False

Here’s a sample of what you get:

2 48	hanidubeit 4 lc−1). Bsa gdib unan robo mhic bsa SEBHOT robopona (UN cirad, caot dobebura,
2 49	nuccah, otr zahi adavobeit) [2]. Bsa dopadn etreloba bsa cidaludan bsob oha hangitnepda mih
2 50	bhotncenneit reg et bsa lihhangitretw ngalbhod haweitn.
2 51	.ETRR 2 1/17/2020 11:03:18 OC
3 1	1.2 Bsa Fihdr’n Nalitr Donah 3
3 2	1.2 Bsa
3 3	Fihdr’n Nalitr Donah
3 4	Etbahanbetwdy, bsa fihdr’n nalitr donah – ombah bsa Coecot’n hupy donah – fon o
3 5	cer‐etmhohar nider‐nboba donah ponar it bhevodatb uhoteuc‐rigar lodleuc mduihera
3 6	(U3+:LoM2) [3]. Eb fon igahobetw ob a fovadatwbs λ = 2.49 μc otr fon ravadigar
3 7	py Gabah Nihiket otr Cehak Nbavatnit ob bsa EPC hanaohls dopn, et bsa
3 8	noca yaoh on bsa Coecot’n hupy donah, 1960.
3 9	Bsa donah fon gucgar py a gudnar mdonsdocg otr fon loodar py dequer
3 10	sadeuc. Bsa atahwy‐davad reowhoc im U3+:LoM2 en nsift et Mewuha 1.3.
3 11	Phiorpotr gucgetw et bsa visible gohb im bsa ngalbhuc lounan bhotnebeitn bi
3 12	axlebar U3+ potrn. Bsana gucgetw bhotnebeitn oha minnifar py hoger, tithoreobeva
3 13	bhotnebeitn bi bsa bfi cabonbopda ullah donah davadn. Bsa bselk ohhif
3 14	nsifn bsa 2.49‐μc donah bhotnebeit ipnahvar py bsa oubsihn. Bsa donah inlennobeit
3 15	bokan gdola et a bhotnebeit mhic a cabonbopda nboba bi a davad bsob en
3 16	ollhixecobady 515 lc−1 opiva bsa whiutr nboba. Ob dequer sadeuc bacgahobuhan,
3 17	bsen nboba en ragigudobar py ob daonb a molbih im 1010 hadobeva bi bsa
3 18	whiutr nboba. Satla, bsen fon bsa mehnb racitnbhobeit im a miuh‐davad nidernboba
3 19	donah.
3 20	Mewuha 1.2 Bsen en fsob bsa oubsih’n dopihobihy dookn deka et bsa cer‐EH hoyn ob 8–12 μc.
3 21	.ETRR 3 1/17/2020 11:03:19 OC
4 1	4 1 Cer‐EH Ngalbhod Hotwa
4 2	Muhbsahciha, bsa 1960 fihk py Nihiket otr Nbavatnit lietar maf newtemelotb
4 3	kayfihrn unar et bsen pook: bhevodatb cabod lobeit, otr bsa 4‐davad
4 4	nynbac.
4 5	1.3 Etbahtod
4 6	Vephobeitn im Cidaludan
4 7	Cidaludan bygelonny sova a lsoholbahenbel opnihgbeit ngalbhuc et bsa ceretmhohar,

Note I’ve made the font size of the numbers slightly smaller. This is set as:

myFontSize = 9

Sub PDFpageNumberer()

[bookmark: _Toc55977165][bookmark: _Toc164352962]Word and phrase frequency
If you have a list of words or phrases whose frequency you want to know in a file you’re working on, this macro will count them first case insensitively (which gives the maximum count), then case sensitively and finally whole words, to avoid counting words-in-words, e.g. ‘etc’ inside ‘ketchup’.

To run this, open (or create) a file containing your list of words/phrases, one on each line. Then open your test text and run the macro. The macro looks at all open files and offers you the file it takes to be the list file. If it’s not, close and rerun the macro. Here’s a sample output:

	
	Insens
	Sens
	Whole

	and
	27
	24
	20

	like
	4
	4
	3

	Chapter
	11
	11
	11

	For
	7
	1
	1

N.B. This only counts the phrases that are in the main text of the document, so if you want to count notes, text boxes etc., first run CopyTextVerySimple, and test the file thus created.

Sub PhraseCount()
[bookmark: _Toc55977166][bookmark: _Toc164352963]Checking for (and counting) duplicated sentences
(Video: youtu.be/xkxuZwF9oIY)

(Do watch the video; you’ll get the idea how this macro works much more quickly than me trying to explain it in words!)

This macro checks all the sentences in a document, to find out if any are (exactly) duplicated and, if so, it counts how many times they occur. It lists the duplicated sentences in a separate document.

(This version replaces an earlier version that was so slow as to be unusable on anything longer than a couple of thousand words.)

[bookmark: _Hlk37865728]Before you run this macro, I strongly suggest you first run CopyTextSimple (better still, especially for large files, use CopyTextVerySimple). This will generate a copy of your document, ensuring that all the text, including that in the foot(end)notes and textboxes is included in the check that this macro is about to run.

When you then run this macro on the copied text, it looks through the sentences alphabetically. This is how it manages to be so much faster than the earlier version: it only has to compare the “A blank blank blank” sentences with the other sentences starting with “A”, and the “Blank blank blank” sentences with the other sentences starting with “B”, etc.

Not only does it produce a list of duplicated sentences, showing to frequency of each, but it also creates a FRedit list that you can use to highlight the occurrences of the duplicated sentences in the original text.

At the beginning of the macro,

minWords = 10

sets the minimum length of “sentence” that the macro bothers to check. Otherwise short section headings, and column headings in tables can end up being reported as “duplicated sentences”.

Sub DuplicateSentenceCount()

[bookmark: _Toc55977167][bookmark: _Toc164352964]Visualise where specific words/phrases are used
(Video: youtu.be/2PG7n5MCMCo)

The idea of this macro is to give you a quick way to see where and how often a given word or phrase occurs within a document. For example, it might be the name of a character in a novel or a legal phrase in a legal document, or the name of a chemical in a technical document.

The macro creates a copy of the document under test, finds the test word/phrase and increases its point size, massively, to make it stand out. Then it reduces the zoom size of the document view, so that you can see several pages at one go – but obviously you can zoom the document view in and out further, according to taste.

So open the document in question and run the macro. If no word is selected, it will ask you to type in your word; if a word is selected, that’s the word it will search for.

The macro then creates a copy of the original, in which it will highlight and enlarge occurrences of that word and it will reduce the zoom size of the window, so you can see lots of pages at one go:
[image:]

If your word has some uppercase characters in it, such as a name, the macro allows you to search case sensitively (or not). So above, ‘West’ was the word, and I said I wanted it case sensitive, so it ignored ‘west’.

Also, you can use the wildcard symbols ‘<’ and ‘>’, so if you want, say, to avoid ‘Western’, I could use ‘West>’. And you can use Word’s other wildcard F&R codes, like ^p and ^t or ^=, ^+, etc.

If you’ve already run the macro once – i.e. it has created a copy of the original file – it will continue to use that copy, and you can just keep graphing different words/phrases.

Other options, which should hopefully be self-explanatory, are:
myFontSize = 120
myZoomSize = 10

myHighlight = wdBrightGreen
' myHighlight = wdNoHighlight

Sub WordGraph()

[bookmark: _Toc55977168][bookmark: _Toc164352965]Checking hyphenation of word pairs
(Video: New: youtu.be/LHWUVKgU-hs – Old: youtu.be/olyCyDzCDe8)

(N.B. This macro is complementary to WordPairAlyse, which is worth checking out, if you’re a total consistency-freak, like me!)

Hint: If you’re analysing large files, it would be a good idea to first run CopyTextSimple (or even CopyTextVerySimple), in order to allow the macro to work on a file with little (or no) formatting for the macro to trip over.

WARNING: When running this macro on big files, you might hear the computer beep – which it does to show that the macro has finished. However, if you click too soon, Word may well crash! It MUST be given enough time – after the macro has finished – to reformat the current file.

This macro analyses the text to find how often word pairs are hyphenated, as two words or as a single word, for example: ‘run-off’, ‘run off’ and ‘runoff’, and it also now picks up words separated by an en dash, e.g. ‘blue–green’.

(N.B. If you are a FRedit user then look at the macro HyphenationToFRedit in the ‘Quicker Creation of FRedit Lists’ section below – it will save you a lot of time!)

Here’s a sample output:

	above-mentioned . . 2
	
	abovementioned . . 3
	

	afore-represented . . 1
	
	
	

	all-band . . 1
	all band . . 1
	
	

	art-methods . . 1
	
	
	

	attention-based . . 12
	attention based . . 19
	
	

	attention-guided . . 3
	attention guided . . 1
	
	

	attention-modulated . . 25
	
	
	

	band-pass . . 18
	band pass . . 1
	
	

	bell-like . . 1
	
	
	

	bell-shaped . . 6
	bell shaped . . 2
	
	

	between-coefficient . . 1
	
	
	

	binary-classification . . 1
	
	
	

	bit-stream . . 17
	
	bitstream . . 2
	

	block-based . . 28
	block based . . 1
	
	

	block-wise . . 1
	
	
	

	blue-green . . 2
	
	
	blue–green . . 4

	bold-faced . . 1
	
	
	

	bottom-left . . 1
	bottom left . . 1
	
	

	closely-packed . . 5
	closely packed . . 3
	
	

	contrast-based . . 1
	contrast based . . 4
	
	

	corner-based . . 1
	
	
	

	
	
	
	

As you can see, as well as counting the hyphenated word (and that includes triple and quadruple words – e.g. the much-over-used expression, ‘state-of-the-art’).

Any item that only occurs as one type of word pair is unlikely to be an inconsistency, so they are coloured light grey to help to draw attention away to the more important word pairs.

The macro also flags up (in red) any word pairs that occur in two form that are more likely to be inconsistencies, e.g. ‘co-axial’ and ‘coaxial’, which clearly need to be made consistent. Word pairs that occur only in columns 1 and 2 are probably OK: you could have, ‘With contrast based on iris size, you have to use a contrast-based assessment.’

One exception to this is, for example: ‘closely-packed’ and ‘closely packed’. Since many editors consider the hyphen to be superfluous with ‘-ly’ adverbs, these word pairs have also been coloured in red.

The macro also counts (and displays in blue) all the words starting with certain specific prefixes, whether or not they are appear in hyphenated form, for example:

	non-ambiguity . . 1
	
	
	

	non-attentional . . 2
	
	
	

	non-equal . . 1
	
	
	

	non-explicit . . 1
	
	
	

	non-gaussian . . 1
	
	
	

	non-head-mounted . . 1
	
	
	

	non-homogeneous . . 1
	
	nonhomogeneous . . 1
	

	non-ideal . . 1
	
	
	

	non-interest . . 1
	
	
	

	non-linear . . 24
	
	nonlinear . . 2
	

	non-linearly . . 3
	
	
	

	non-object . . 2
	
	
	

	non-oscillation . . 1
	
	
	

	non-overlapping . . 2
	
	
	

	non-parametric . . 1
	
	nonparametric . . 2
	

	non-reference . . 4
	
	
	

	non-roi . . 2
	
	
	

	non-uniform . . 1
	
	
	

	non-zero . . 4
	
	
	

To specify which prefixes you want checking, you can use the line:

myList = "anti,cross,eigen,hyper,inter,meta,mid,multi," _
 & "non,over,post,pre,pseudo,quasi,semi,sub,super"

In non-technical work, you might not need them all, so you could delete some of them from the list, although it won’t actually make a lot of difference to the overall speed.

This macro is a bit slow on large complicated files. I ran it on a 213,000-word file that had a lot of hyphenated words and it took 54 minutes, coming up with 2154(!) different hyphenated or prefixed words. Other timings: an 111k file with 1447 items took 20 mins, and 70k file with 520 items took just 5 mins. This is with an eight-year-old desktop computer that wasn’t top-of-the-range when I bought it.

As supplied, the macro includes numbers in its search, so that it will find, say, ‘2D-based’ or ‘9-mm’ or ‘non-90-degree’. You can speed up the macro up slightly, if you tell it not to include numbers, by changing the line:

includeNumbers = True

to False.

The other option is to display the results table whether or without lines. With lines, it looks like this:

	bell-shaped . . 6
	bell shaped . . 2
	
	

	between-coefficient . . 1
	
	
	

	binary-classification . . 1
	
	
	

	bit-stream . . 17
	
	bitstream . . 2
	

	block-based . . 28
	block based . . 1
	
	

	block-wise . . 1
	
	
	

	blue-green . . 2
	
	
	blue–green . . 4

which I find more difficult to read. This is set with:

deleteTableBorders = True

[bookmark: _Hlk57015737]Hint: On a big file, the status bar should show you the progress, and if you do want to stop the macro from running, you should be able to do so by pressing Ctrl-Break. However, Word does sometimes ignore Ctrl-Break on a hard-working macro.

(Also, if your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP PRESS! I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard – press Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’.)

Sub HyphenAlyse()

[bookmark: _Toc55977169][bookmark: _Toc164352966]Transferring words from hyphenalyse to a stylesheet
Once you’ve run HyphenAlyse and looked through the author’s usage of hyphenation, you’ll be making decisions about which words will be hyphenated and which not. These decisions would normally be recorded in a word list as part of a stylesheet, and this macro speeds up the production of that word list.

Obviously, I’ve done it to create a word list in the format I use. If you don’t like it, maybe I can alter the macro to suit your taste. My lists look like this:

auto<word> – NONE are hyphenated
chincap
chincup
cooperat...
coordinat...
cross bite
hyper<word> – NONE are hyphenated
focused
infra<word> – NONE are hyphenated
intra<word> – NONE are hyphenated except…
	intra-arch
inter<word> – NONE are hyphenated
mesiodistal
meta-analysis
mid<word> – NONE are hyphenated
multi<word> – NONE are hyphenated
non<word> – ALL are hyphenated
overjet
post<word> – NONE are hyphenated except…
	post-pubertal
	post-retention
	post-surgical
	post-treatment
pre<word> – NONE are hyphenated except…
	pre-adolescent
	pre-phase
	pre-treatment
semi<word> – ALL are hyphenated
sub<word> – NONE are hyphenated except…
	sub-gingival
super<word> – NONE are hyphenated except…
supra-eruption
while (not whilst)

So, to create the hyphenation items of this list, look through the hyphenation list, marking it up according to your decisions, using highlighting for the ‘rules’ and either underline or strikethrough (whichever you prefer) for the exceptions:

1) For no hyphenation of a particular prefix, highlight just the prefix, e.g. autorotation 2

2) For hyphenation of a particular prefix, make sure you highlight the hyphen: non-linear . . . 14

3) For the exceptions, apply an underline (or strikethrough) to some part (any part) of the cell: intra-arch 6

4) For any other word that you need to mention specifically in the list, highlight at least the whole word: chincap . . . 9 (i.e it’s OK to use double-click, which also highlights the following space.)

N.B. You only need to highlight one of the words that starts with, say, ‘auto’, not all of them!

Hint: I find yellow highlighting doesn’t show up very well on text, so I’ve set up my HighlightPlus macro to use bright green as my colour of choice.

Sub HyphenationToStylesheet()

[bookmark: _Toc55977170][bookmark: _Toc164352967]Checking word pairs that are not hyphenated
(Video: youtu.be/LHWUVKgU-hs)

(Mac users can try using this macro, but if it fails, please contact me.)

If, for example, your text uses ‘web site’ and ‘website’, but does not use ‘web-site’, then HyphenAlyse will not detect it. This macro searches through your text to find such word pairs.

Below is the output from a 50,000-word book. Clearly some items are irrelevant, such as ‘so on’ / ‘soon’, but you can easily scan the list to see items that do need some thought.

The macro adds a “test pair” of nonsense words so that if your text doesn’t have any word pairs, you don’t just get a blank list. Silly idea? OK then change addAtestPair = True at the beginning of the macro to False.

are as . . 10
areas . . 6

can not . . 3
cannot . . 11

in complete . . 1
incomplete . . 1

in form . . 1
inform . . 1

on to . . 2
onto . . 1

rain forests . . 1
rainforests . . 4

so on . . 1
soon . . 5

wide range . . 19
widerange . . 1

Before you run this macro, I strongly suggest you first run CopyTextSimple. This will generate a copy of your document, including all the text in any foot(end)notes and textboxes.

Here’s a list of timings for different sized files on my desktop computer, to give you some idea of how long you’ll have to wait:

51 kwords	1 min
100 kwords	3 min
200 kwords	12 min
400 kwords	42 min

Sub WordPairAlyse()

[bookmark: _Toc55977171][bookmark: _Toc164352968]Measure average sentence length
Someone asked me for a macro that would not only measure the average length of sentences in terms of words, but also give the standard deviation.

Writing it was an interesting job because it revealed that Word’s own ‘readability statistics’ which purport to give a figure of average sentence length are a little questionable. In case you are interested, this macro has an option at the beginning which allows you to decide if you want to see what Word thinks. It currently does not show the stats. If you want to make it show Word’s own stats, use:

showReadability = True

More interestingly, it also does two versions of the average sentence length. The first takes the text as a whole. The second version first deletes all paragraphs that don’t have a full stop at the end. The idea is that this will delete headings and items in lists. Both sets of figures are given by the macro, so you can pay attention to whichever is the more meaningful in a given situation.

This latest version also does a frequency distribution showing the numbers of sentences in each of a range of lengths, e.g.:

 1 to 3 = 7
 4 to 6 = 9
 7 to 9 = 4
 10 to 12 = 11
 13 to 15 = 8
 16 to 18 = 5
 19 to 21 = 7
 22 to 24 = 4
 25 to 27 = 1
 28 to 30 = 6
 31 to 33 = 2
 34 to 36 = 4
 37 to 39 = 0
 40 to 42 = 0
 43 to 45 = 2

You can choose your range of lengths using the myStep value at the start of the macro. The list above is myStep = 3, so I’m sure you can work out how to change it to other values.

Sub SentenceAlyse()

[bookmark: _Toc55977172][bookmark: _Toc164352969]Highlight over-long sentences
If you want to draw attention to all the very long sentences in a text, this macro sets two lengths and highlights sentences of these lengths or more in yellow (medium) and red (mega-long).

Sub LongSentenceHighlighter()

[bookmark: _Toc55977173][bookmark: _Toc164352970]Highlight over-long paragraphs
If you want to draw attention to all the very long paragraphs in a text, this macro highlights and/or colours them at two levels: medium or ultra-long. It uses highlighting for levels set in terms of the number of words and font colouring in terms of the number of sentences.

You can have either or both operating:

checkWordsCount = True/False
checkSentsCount = True/False

and you can select the assessment levels and colours:

mediumWordsLength = 100
myWordsColourMed = wdYellow
megaWordsLength = 150
myWordsColourMega = wdBrightGreen

mediumSentsLength = 6
mySentsColourMed = wdColorBlue
megaSentsLength = 9
mySentsColourMega = wdColorRed

Sub LongParagraphHighlighter()

Or if you want to specify the length in terms of the number of lines

Sub ParagraphLineLengthHighlighter()

[bookmark: _Toc55977174][bookmark: _Toc164352971][bookmark: _Hlk37696892]Show distribution of sentence lengths
Another editor requested a statistics macro: to show the distribution of sentence lengths, in terms of words. Here’s a sample output from the macro (from 112,000 words of my own faith-related writing).

2-4	■■■ 683
5-8	■■ 833
9-12	■■■ 768
13-16	■■ 698
17-20	■■ 587
21-24	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 527
25-28	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 434
29-32	■■■■■■■■■■■■■■■■■■■■■■■■ 347
33-36	■■■■■■■■■■■■■■■■■■■ 270
37-40	■■■■■■■■■■■■■■ 202
41-44	■■■■■■■■■■ 141
45-48	■■■■■■■■■ 126
49-52	■■■■■ 73
53-56	■■■■ 67
57-60	■■ 31
61-64	■■ 29
65-68	■ 16
69-72	 3
73-76	 7
77-80	 3
81-84	 4
85-88	 3
89-92	 1

Options include setting roughly how many ‘columns’ (i.e. rows as the histogram is sideways) it should produce, and how many blocks across the page are used the represent the most frequent word count.

maxNumColumns = 30
maxBlocks = 60

Not only does the macro produce a frequency chart, but it (optionally) creates a sorted list of sentences in order of length. You can then quickly look at the longest sentences actually are and see the short ‘sentences’ are – a heading is a ‘sentence’.

WARNING: When running this macro on big files, you might hear the computer beep – which it does to show that the macro has finished. However, if you click too soon, Word may well crash! It MUST be given enough time – after the macro has finished – to reformat the current file.

So how do you know whether the reformatting has finished, so that it’s safe to click the screen? I’ve just discovered the key: Has the cursor started flashing yet? If not, it’s still reformatting, so don’t touch anything! Only when Word has totally finished the reformatting does the cursor flash, and only then is it safe to click the screen.

Also, if a macro tries to sort a really big file (250,000+ words?), Word may generate the message something like: “File too big to sort” or some such. If so, the macro needs to use a slower-but-safer sorting technique. The file size at which this method is used is controlled by the line:

bigDoc = 250000

i.e. if the file has more than 250,000 words, the macro will use the alternative method. So leave this number as high as possible, unless and until you get the error I mentioned. Then reduce the value of bigDoc accordingly.

Sub FrequencySentenceLength()

[bookmark: _Toc55977175][bookmark: _Toc164352972]Show distribution of word lengths
Then another editor requested the distribution of word lengths. Here’s a sample output from the macro.

1	■■■■■■■■■■■■ 329
2	■■ 1264
3	■■ 1572
4	■■■ 1187
5	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 777
6	■■■■■■■■■■■■■■■■■■■■■■■■■ 663
7	■■■■■■■■■■■■■■■■■■■■ 529
8	■■■■■■■■■■■■■■■■ 426
9	■■■■■■■■■■■■ 340
10	■■■■■■■ 207
11	■■■■ 113
12	■■ 58
13	■ 35
14	 9

Options include how many blocks across the page are used the represent the most frequent word count, but each ‘column’ has a range of 1, because word lengths aren’t as numerous as sentence lengths.

maxBlocks = 60
longWord = 12

The macro optionally creates a list of the longest word, sorted by word length and alphabetically. The second option above sets the word length from which the macro starts to put the words into the list.

Be patient because longer documents have (a) a greater number of different words, and (b) more words through which to count the occurrences of a given word. Therefore, the run time of the macro on large files gets doubly longer. So if you have a long file to test, try the macro on a subset of your text, then on a longer section, etc, before trying the whole thing.

When the macro first runs, it copies the text into a new file, so that it can strip out confusing characters; this ‘stripped out’ file can then be reused if you want to rerun the count. So you might, for example, do a test first without a frequency count, consider the lengths of words for which you want a frequency, and then run again with the frequency count.

Sub FrequencyWordLength()

[bookmark: _Toc55977176][bookmark: _Toc164352973]Show distribution of paragraph lengths
And to complete the set, what about the distribution of paragraph lengths? Here’s a sample output from the macro.

1	■■■■■■■■■■■■ 329
2	■■ 1264
3	■■ 1572
4	■■■ 1187
5	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 777
6	■■■■■■■■■■■■■■■■■■■■■■■■■ 663
7	■■■■■■■■■■■■■■■■■■■■ 529
8	■■■■■■■■■■■■■■■■ 426
9	■■■■■■■■■■■■ 340
10	■■■■■■■ 207
11	■■■■ 113
12	■■ 58
13	■ 35
14	 9

Options – as with the sentence version – include setting roughly how many (horizontal!) columns it should produce, and how many blocks across the page are used the represent the most frequent word count:

maxNumColumns = 30
maxBlocks = 60

Not only does the macro produce a frequency chart, but it (optionally) creates a sorted list of paragraphs in order of length, so you can examine the longest paragraphs.

WARNING: When running this macro on big files, you might hear the computer beep – which it does to show that the macro has finished. However, if you click too soon, Word may well crash! It MUST be given enough time – after the macro has finished – to reformat the current file.

So how do you know whether the reformatting has finished, so that it’s safe to click the screen? I’ve just discovered the key: Has the cursor started flashing yet? If not, it’s still reformatting, so don’t touch anything! Only when Word has totally finished the reformatting does the cursor flash, and only then is it safe to click the screen.

Also, if a macro tries to sort a really big file (250,000+ words?), Word may generate the message something like: “File too big to sort” or some such. If so, the macro needs to use a slower-but-safer sorting technique. The file size at which this method is used is controlled by the line:

bigDoc = 250000

i.e. if the file has more than 250,000 words, the macro will use the alternative method. So leave this number as high as possible, unless and until you get the error I mentioned. Then reduce the value of bigDoc accordingly.

Sub FrequencyParagraphLength()

[bookmark: _Toc55977177][bookmark: _Toc164352974]Count uppercase and lowercase characters
[bookmark: _Hlk56415962]This is more for fun than anything else, but when I had One of Those Jobs where the Author thinks that Every Important Word has to have an Initial Cap, I wondered just how many words I had decapit(alis)ated. As I say, just a bit of fun to run this before and after.

Sub CountCase()

[bookmark: _Toc55977178][bookmark: _Toc164352975]Count words that are highlighted
If you place the cursor in an area of text in a certain highlight colour, it collects and counts all the text in that colour.

If you place the cursor in an area of text that is not highlighted, it collects and counts all the text in any colour.

Sub CountWordsInHighlightColour()

[bookmark: _Toc55977179][bookmark: _Toc164352976]Copy paragraphs that contain highlighted (and coloured) text
This macro creates a new document consisting of a copy of each and every paragraph that contains some highlighted (or font-coloured) text. You can choose to double-space the paragraphs.

And now it can do the same for all the sentences in the document.

Sub CopyHighlightedTextParagraphs()

Sub CopyHighlightedTextSentences()

[bookmark: _Toc55977180][bookmark: _Toc164352977]Highlighting words not in vocabulary list
The aim of this macro is to check through a text and highlight any ‘too difficult’ words. The definition of ‘too difficult’ is more than a certain length (set by ignoreLength = 3) and not included in either the list of ‘easy’ words at the beginning of the macro, or in a word list file.

To run the macro, you must have two and only two files open in Word: the text file being tested and the word list file. The latter is defined by having the words ‘Word list’ at the top, e.g.

Word list
macro
probably
patiently
patient
happening
etc

If you don’t want the easy-words feature, just use

easyWords = ""

And if you don’t need the ‘minimum word length’ feature, set

ignoreLength = 0

Sub TooDifficultWordHighlighter()

[bookmark: _Toc55977181][bookmark: _Toc164352978]Point out repetitious use of words
The idea here is that you are looking for the same word (or derivatives) being used too close together: “The start of the list had to be started within...”.

The macro searches through the text until it sees two words within a certain distance (number of words) of one another, and stops.

The usefulness of this Macro will depend on your application, and you’ll need to ‘tune’ the macro so as to (a) not stop at repetitions that are normal and acceptable (“Is that the book that John showed you”), but not to miss the useful occurrences of repetitiveness.

So the macro allows you to set:

a) the minimum length (characters) of words that it checks: e.g. minLength = 4

b) the maximum distance apart that the repeated words can be: e.g. rangeWords = 20

c) words that need to be ignored however often they are repeated:
e.g. ignoreWords = "their,these,what,that,which"

If you have, say, minLength = 4 then you don’t need to have “who,the,you” in your ignore list.

As I say, you’ll have to try it and see how best to set the conditions for your own application.

Sub FindRepeatedWords()

[bookmark: _Toc55977182][bookmark: _Toc164352979]Highlight repeated words in sentences
(Video: youtu.be/1NnppLuNyuE)

(N.B. This and the next macro trip over track changed text – the highlighting and font colours will be applied in the wrong places! If that’s a problem, you can launch either of the macros from the macro, MacroRunNoTC.)

Someone said they had been criticised about an edit because there were repeated words in sentences, where it would have been better to change one of the words to some synonym. So please would I write a macro to highlight repeated words within each sentence in a document?

OK, but there are some words that have to be repeated and are insignificant and some words that are significant!

OK, but there are some words that have to be repeated and are insignificant and some words that are significant!

So the way I’ve played it is (1) ignore words of three characters or less and (2) put a list of words in macro itself that you are telling it to ignore, so you might end up with:

“OK, but there are some words that have to be repeated and are insignificant and some
words that are significant!”

Here’s the list; you can add or subtract, but you need to maintain the spacing with the commas.

wdsIgnore = ",about,been,from,have,here,into,it" & ChrW(8217) & "s,"
wdsIgnore = wdsIgnore & ",some,that,their,them,then,there,these,they,"
wdsIgnore = wdsIgnore & ",this,those,very,were,will,what,with,"

There are two other options.

useHighlight = False
useColour = True
useManyColours = True

The first two lines allow you to switch on and off highlighting and/or font colouring, and the third, if changed to False, will restrict the highlighting or font colouring to one single colour.

So with font colouring:

“OK, but there are some words that have to be repeated and are insignificant and some
words that are significant!”

And the single colour used for font or highlight will be the first colour in each of the two colour lists – I’m sure you’ll work it out, if you want to change it.

Sub RepeatedWordsInSentences()

[bookmark: _Toc164352980]Highlight repeated words in paragraphs
As above, but for paragraphs.

Sub RepeatedWordsInParagraphs()

[bookmark: _Toc164352981]Using repeated word macros avoiding track changes
The two macros above trip over track changed text! If that’s a problem, you can launch either of those macros from this macro.

It creates a copies the current text into this new file. Then it runs the highlighting macro on this temporary file, copies all the highlighting back across into the original file, and finally deletes the temporary file.

Because this is a long process, to speed it up, the macro disables screen update. It therefore looks as if nothing is happening, but hang on in there, and eventually it will finish and show you the original file, suitably highlighted.

Sub MacroRunNoTC()

[bookmark: _Toc55977183][bookmark: _Toc164352982]List special sorts
(Video: youtu.be/_fWD4sXNg5s)

This macro creates a list of all the different special characters that occur in the document. You can choose to include in the list ordinary accented characters, such as é, á, î, ñ etc by setting listAccentedChars = True.

Warning: Try this macro first on a small file – two or three paragraphs with some known special sorts. Why? Well, if you work on a large file, it can take quite some time, and, as with any long-running macro, if you start clicking on the screen to see if it’s still working, you can cause Word to crash. I’ve added in some encouraging beeps at various stages, to reassure you that it’s working and will get there in due course. It should make a total of four beeps before finishing.

The result might look like this:

Special sorts used:

 	thin space
−	minus sign
±
 	non-breaking space
α
ε
ζ
η

You can add explanatory wording for any of the characters, by adding it into the macro, following the format used.

Sub SpecialSortsLister()

[bookmark: _Toc55977184][bookmark: _Toc164352983]List all words in a given font colour
This was a requirement of someone who had special words in a text that had been highlighted using a font colour. They wanted to create a glossary of all these words, so this macro finds all the words in the text that appear in the current font colour (i.e. place the cursor in the first such word), and sorts it alphabetically.

Sub ListAllColouredWords()
[bookmark: _Toc55977185][bookmark: _Toc164352984]List all text that is highlighted
This macro finds all the text in the current file that is highlighted, puts it into a list in a separate file and sorts it alphabetically.

Sub ListHighlightedText()

[bookmark: _Toc55977186][bookmark: _Toc164352985]List all URLs in a file
This macro creates a list, in a separate Word file, of all the URLs, both the visible text and the underlying URL.

Sub ListAllLinks()

[bookmark: _Toc55977187][bookmark: _Toc164352986]List all paragraphs starting with...
(Video: youtu.be/t4ADwZ4QwTA)

Someone asked for a macro that created a list, in a separate Word file, of paragraphs that started with a particular word. This is a more generalised version of that macro. It allows you to type in the specified word, or to select some text, and it will use that text, or if you don’t select any text, it picks up the current word at the cursor and offers you that as a possible word to use.

This macro actually copies the paragraphs, so it pulls all the formatting with it. I used the macro on this book, to give me a list of all the lines starting with “Sub”, i.e. to generate a list of all the macros, and it was a bit slow (well, there are currently 580 such paragraphs!), so I modified it so that it just picked up the text, without the formatting, which is a lot faster.

Sub ListOfParas()

Sub ListOfTextParas()

[bookmark: _Toc55977188][bookmark: _Toc164352987]List all text in a given font or highlight colour
Place the cursor in a bit of text in the given font colour or highlight colour and run the macro. It creates a new document, copies the text and removes everything not in the required colour. It then gives you the option to sort the list alphabetically.

You can choose whether or not to remove the highlighting or font colouration using the first line of the macro:

removeColouration = True

Sub ListHighlightedOrColoured()

[bookmark: _Toc55977189][bookmark: _Toc164352988][bookmark: _Hlk44140434]Split a document into two: coloured font or black
(https://youtu.be/-9UELiY7ZJk)

This was set up for a translator, where the Portuguese translation of each paragraph was interleaved with the English, but in coloured font. The macro creates two copies of the document: one with just the black text and the other with just the coloured text – any colour, as long as it’s non-black.

Sub FontColourDocumentSplit()

[bookmark: _Toc55977190][bookmark: _Toc164352989]Making a sublist of items in a list containing a word or phrase
(Video: youtu.be/DnG1XCuOUlk)

Maybe you have a list of citations:

Archi-Media founded in 1992
Engineering and Grabher 2001
Beijing the 2008
Blau 1984
Blau and Lieben 1983
Campagnac and Winch 1997
Carr et al 1999
Coxe et al 1987
Eastman et al 2008

And you want to create a sublist of all the citations from the 1990s. So, select ‘199’ and run the macro – or just run the macro and type in ‘199’ and will create a new file and find all the items in the list containing that text.

If it’s a word (or words) you’re searching for then you can set the macro to be case sensitive, or not:

caseSensitive = True

It was designed for searching through a list, but it’s just looking through the paragraphs, really, so it can be any text. For paragraphs, you might want a blank line between each paragraph found, so put:

addBlankLine = True

Sub ListOfList()

[bookmark: _Toc55977191][bookmark: _Toc164352990]Making text boxes [textboxes] visible (+ odd fonts + trackchanges etc.)
This macro was born out of a long hard search for a way to make rogue text boxes [textboxes] (and graphics boxes) more easily visible on screen.

I realised that if the main text could be made INvisible, the ‘added bits’ would be very clearly visible. So this macro turns all the main body text to white font so that white on white = invisible. Run it again to restore the text visibility.

If no text is selected, the macro makes the whole text black-to-white inverted. If text is selected, it only changes the selected text. So, you can whiten all the text, look through to see what’s what, then if you get to a section of interest, you can restore the text blackness on just that bit of text.

“What about text in other colours?” Well, when running FRedit on a file to make global changes prior to editing I use colour text (rather than highlighting) to show text that has been changed but where I don’t want it track-changed. So this macro only whitens black text – coloured text remains.

What’s more, track changes, since they are red, not black, remain visible.

Here’s a sample bit of text (the equations have been highlighted using EquationsHighlightAll):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Provided that the grounding arc occurs at phase A when t = t1 (uA = +Um, Um is the amplitude of the phase voltage of the supply), the voltages across the three-phase capacitances at the time prior to the arcing instant are the three-phase supply voltages, respectively given by the following set of equations.


(1.4.17)





Right after the arcing, charges stored in the capacitance to ground of phase A C1 flow into the ground through the arc and its voltage is reduced to zero; the capactances capacitances to ground of the two non-fault phases C2 and C3 are charged by line voltage uBA and uCA via supply inductance with their voltages transiting from the initial value  to the instatenousinstantaneous value of uBA and uCA. The frequency of the high-frequency oscillation is determined by supply inductance and conductor-to-ground capacitance. The stable values of the voltages across the three-phase conductors are given by

(1.4.18)




~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Important hint: If you do a Ctrl-A to select all text, text boxes are given a blue tint borders, which also helps visibility. Try it now, on this text here.

Sub HideShowText()

[bookmark: _Toc55977192][bookmark: _Toc164352991]Finding chronology words in context
(Video: youtu.be/PB0hXA_1tRo)

This is aimed at fiction editors wanting to trace the chronology of a novel. The macro extracts, into a separate file, all the paragraphs containing appropriate chronology-type words: Monday, Wednesday, Fri, Sat, April, June, 1958, 2017, etc. These words are highlighted so that you can easily check as you scan through the list of paragraphs.

N.B. If you think of other chronological type words you would like it to detect, please let me know, as this isn’t a macro I’ll actually be using.

I wondered if things like ‘age’, ‘aged’, ‘years old’ would be useful, so I added more searches but then realised I was picking up things like ‘pages’ and ‘waged war’, so I split them into four groups, making one whole word searches:

' Case sensitive
myWords_1 = "Monday, Tuesday, Wednesday, Thursday, Friday,"
myWords_1 = myWords_1 & "Saturday, Sunday,"

myWords_2 = "January, February, April, June, July, August,"
myWords_2 = myWords_2 & "September, October, November, December"

' Case insensitive
myWords_3 = "years old, tomorrow, next day, morning, evening, week, month"

' Case insensitive + whole word
myWords_4 = "age, aged"

' Case sensitive AND whole word
myWords_5 = "May, March, Mon, Tue, Tues, Wed, Weds, Thu, Thurs, Fri, Sat, Sun"

Sub ChronologyChecker()

(Video for this next section: youtu.be/2hrfWRyDx18)

But if you prefer to have these chronology words highlighted within the text, you can just use FRedit, with a list something like this:

| Highlight chronology words

Monday|^&
Tuesday|^&
Wednesday|^&
Thursday|^&
Friday|^&
Saturday|^&
Sunday|^&
January|^&
February|^&
March|^&
April|^&
May|^&
June|^&
July|^&
August|^&
September|^&
October|^&
November|^&
December|^&

| Any case (Case insensitive)

¬a.m.|^&
¬p.m.|^&
¬dawn|^&
¬day|^&
¬dusk|^&
¬evening|^&
¬hour|^&
¬midnight|^&
¬month|^&
¬moon|^&
¬morning|^&
¬night|^&
¬noon|^&
¬o'clock|^&
¬tomorrow|^&
¬week|^&
¬years old|^&
¬yesterday|^&

| Match case (Case sensitive)
| Whole words only

~<age>|^&
~<aged>|^&
~<Fri>|^&
~<March>|^&
~<May>|^&
~<Mon>|^&
~<Sat>|^&
~<Sun>|^&
~<Thu>|^&
~<Thurs>|^&
~<Tue>|^&
~<Tues>|^&
~<Wed>|^&
~<Weds>|^&

~<[12][0-9]{3}>|^&

If you then want to unhighlight these chronology words, you can use the UnHighlight macro, selecting a bit of the green text, so that it knows to unhighlight the green. However, I’ve written a specific macro for this, and the highlight colour it will remove is set in the first line:

myColour = wdBrightGreen

Sub ChronoColourOff()
[bookmark: _Toc164352992][bookmark: _Hlk157592791]Index items in a word list
This macro was originally written for use with FullNameAlyse in mind, but it could have a range of applications.

If you have a list of names/words/phrases, and want to know where these people/places are mentioned in your document, you just create a list:

Cheshire Cat
Cheshire Puss
Edgar Atheling
etc…

Then run this macro, and it gives you a poor-man’s index:

Cheshire Cat – 20, 22
Cheshire Puss – 22
Edgar Atheling – 8
Father William – 16
Latin Grammar – 6
Little Bill – 1, 11
Long Tale – 1, 7
Mad Tea-Party – 1
March Hare – 22, 23
Mary Ann – 11, 12
Miss Alice – 11
Poor Alice – 3, 4, 5, 10, 11, 12, 17
White Rabbit – 1, 2, 5, 11

An extra feature is that if you apply font colour and/or highlighting to any of the items in your list, the macro also highlights/colours those words/phrases accordingly throughout the document.

If your list has frequency numbers, as generated by FullNameAlyse or ProperNounAlyse, don’t worry; the macro will remove them before adding the index numbers.

Cheshire Cat	1
Cheshire Puss	1
Edgar Atheling	1
…
or

Canary . . . 1
Canterbury . . . 1
Caterpillar . . . 27
Caucus . . . 4
Cheshire . . . 4

Sub IndexListItems()

[bookmark: _Toc164352993]Finding names/words/phrases in context
(Video: youtu.be/PB0hXA_1tRo)

This macro was written originally for fiction editors, to track the occurrence of specific names through a novel, but I realised that it could have a wide range of other applications, so I expanded it to be optionally case sensitive and to include phrases. You give the macro a list of names/words/phrases, and it searches for any paragraphs in the text that contain them. It creates a separate file of those paragraphs, with the searched element highlighted in your choice of colour.

If you use a search text such as ‘Brown’, it will be case sensitive and therefore not find ‘brown sugar’. However, if you use, say, ‘¬van de Waal’, it will find all the permutations and combinations of van/Van, de/De.

You can include punctuation, for example, ‘However,’ or ‘such as:’, and it can also find numbers: BS 942, 999, 2016, 22/9/48, 9/11, etc.

You can input some searches in one of four ways:

1) Put a list of names/words/phrases at the beginning of the macro

findWords = "Brown | Jones | ¬van der Waal"

but in this case all the found search words will be highlighted in the same colour, as specified by myBasicColour = wdYellow at the beginning of the macro.

2) At the end of the document you are testing, you can add, say:

Context words:
Bloggs
Brown
¬van der Waal

then when the macro runs, it will search for each of the texts in that list, colouring them accordingly.

N.B. The macro searches for ‘Context words:’, so that exact text must precede the list of searches.

(Being lazy, I’ve added a feature so that you can just put the list of words at the end of the file, put the cursor in the first one and not even bother highlighting them.)

3) You can place a list as per the example above, but put it at the end of either your FRedit list (zzFReditList) or your MultiSwitch list (zzSwitchList). N.B. These lists must be at the end of the file, with no following text.

Not having to put the list into the file under test would be very useful if you wanted to do this context search for each and every chapter file of a book. For example, you might want:

Context words:
Figure
Table
Equation
Eqn
¬chapter
¬chapters
¬section
¬sections

You can probably see my thinking here: it would be quite quick to check continuity of numbering in this way. That said, the macro FigTableBoxLister will give much more information about these elements of you file. But it might be useful for equations, and chapter and section citations.

You can, of course, do this context checking as part of your FRedit list by using:

DoMacro|WordsPhrasesInProximity

However, you’ll also need to set:

returnToText = True

so that after FRedit has run this macro, the focus would return to the main text so that FRedit can continue doing the rest of its F&Rs.

4) If you want to just search for a word/phrase, then as long as there’s no ‘Context words:’ available it will prompt you to input your search at the keyboard. However, it will offer you the currently selected text or, if nothing is selected, the current word, and you can just press Enter.

Hint: If there’s a ‘Context words:’ available but you don’t want to use it, simply type a space in the middle of ‘Context’, and the macro will ignore it.

Sub WordsPhrasesInContext()

[bookmark: _Toc55977194][bookmark: _Toc164352994]How many fields, and of what type?
(Video: youtu.be/_fWD4sXNg5s)

It can be helpful to know exactly what types of fields a file contains, and of what type. Then you can decide whether you want to unlink any or all of those fields, i.e. turn them into fixed text. For example, if you have certain types of equations, they are held as fields, but if you unlink them, they will turn into uneditable bitmaps – definitely not a good idea!

Run this macro and, at the end of the document, you will find something like this (which is what I got with this document!):

 1 field type 13 (table of contents)
 12 field type 58 (equation)
 518 field type 88 (hyperlink)

However, if the macro finds a type of field that is not included in its list, it will say, for example:

 19 field type 4 (type unknown by this macro)
docs.microsoft.com/en-us/dotnet/api/microsoft.sharepoint.spfieldtype?view=sharepoint-server)
 160 field type 58 (equation)

So if you look up this URL which it gives you, you can find out what that field type is (dateTime) then you can add this into the macro, so it correctly identifies it in future.

When the macro finds an unknown field, it offers to stop. That means you can see where the cursor has stopped, so you can actually see the field, especially if you type Alt-F9, which should show the field code in curly {} brackets.

Sub FieldAlyse()

[bookmark: _Toc55977196]
[bookmark: _Toc164352995]10 Main pre-editing tool – FRedit ____
N.B. The text below is just a brief description of the idea of FRedit. Please do not try to use FRedit without reading the FRedit instruction manual. The manual and some sample files are available from: www.archivepub.co.uk/documents/FRedit.zip

Also, there are some (helpful?) videos:

FRedit for Beginners Part 0 (4:15) – Find FRedit and install it on your computer: youtu.be/B7ouU3OzWRE
FRedit won’t work! (3:20) – Help with trying to get FRedit working for the first time: youtu.be/nVcneZZgV2g
FRedit for Beginners Part 1 (4:17) – Here’s how to get started: youtu.be/X9e7770QWiY
FRedit for Beginners Part 2 (3:50) – More techniques for file clean-up: youtu.be/4hlnYqyfOQk
FRedit for Beginners Part 3 (4:13) – Learn more things FRedit can do for you:youtu.be/GO8iW0WBfp0
FRedit for Beginners Part 4 (5:08) – Adding wildcards into your FRedit armoury: youtu.be/Fq6p_RdMHb4
FRedit for Beginners Part 5 (5:24) – Adding and removing formatting: youtu.be/MXiPpz0yVQE
FRedit for Beginners Part 6 (5:53) – A few tricks of the trade: youtu.be/ohPwmX1mS00
FRedit for Beginners Part 7 (16:31) – The FRedit Library: youtu.be/EulSXDNJw0k
Advanced FRedit use (10:49) – Some high-power uses of FRedit: youtu.be/wHR7Yl_dBjI
FRedit queries 1 (7:58) – Answers to a couple of queries about FRedit: youtu.be/QYEIVbmIMQA
FRedit revision 1 (15:09) – Reinforcing the basic principles of FRedit: youtu.be/Mt4iuh6SOAM
FRedit revision 2 (5:50) – More about applying attributes, plus another gotcha: youtu.be/aQ_hR_K-INM
FRedit with notes and text boxes (4:58) – FRedit with foot/endnotes and text boxes: youtu.be/bGIMXppJlFM
FRedit and MultiSwitch (9:09) – Differences and similarities between the two macros: youtu.be/yGZHej6vaZ4
New way to run FRedit (5:41) – Run FRedit by selecting a FRedit list from a menu: youtu.be/1bVduGAFrhU
MiniFRedit (4:34) – Subset of FRedit’s features, using a quick-and-easy method: youtu.be/DfAGD9RCpNQ
FReditListChecker – Check your FRedit list for some of the ‘obvious’ errors: youtu.be/Z7cjf446JWM
FRedit – Stretch yourself (31:35) – A look at one of my fairly advanced FRedit lists: https://youtu.be/doMAH8b94fQ
Text manipulation example (12.24) – Using FRedit and other tricks to manipulate a problem text: youtu.be/FTdyBWm4AzY
US UK spelling conversion (12:23) – Using FRedit to speed up US/UK spelling conversion: youtu.be/XkgTTNcmI2I

Alternatively, try FReditSimple, below (also MiniFRedit).

When I very first started freelance editing, I noticed that each time I opened a new file, ready to edit it, I was doing a number of global find and replaces – double space to single, spaced hyphen to spaced en dash, ‘et al’ to ‘et al.’ and so on. I thought to myself, ‘Wouldn’t it be good if I could create a list of these changes, in a Word file and then run the F&Rs automatically? It would save me typing out the same F&Rs over and over again.’ And I realised too that this would be especially useful with a multifile job where I would want to do exactly the same set of F&Rs on each file, and wouldn’t want to forget any of them.

A friend who was then ‘into’ macros said that he could write something that would do just that, and ‘FRedit’ was born – ‘Find and Replace edit’.

Then, as I too have learnt how to program macros, FRedit’s facilities have got more and more sophisticated, and now I simply couldn’t imagine doing an editing job without it. It saves me time, and increases the consistency of my edited output.

Importantly, you can use FRedit with Word’s wildcard searching facility, and the fact that you don’t have to (remember or) type out those arcane strings of symbols (e.g. Find ([0-9]) ^= ([0-9]) and Replace \1^=\2) is a real boon. Where it becomes really powerful is that you can do a series of linked wildcard F&Rs. But don’t panic: you don’t have to work these things out for yourself. Other people have done the hard work – you just copy their F&Rs and paste them into your own lists of F&Rs and use them.

You may also be worried that by doing global F&Rs, you might change things that you didn’t intend to. You are absolutely right to worry! FRedit is an extremely dangerous tool if used ill-advisedly, so don’t try to do too much with it too soon. As with any dangerous tool – a sharp cooking knife or a circular saw – your skill and confidence builds the more you use it. But, in the same way that many tools have safety features that you can use (or choose not to use as your skill grows), so does FRedit. You can use tracked changes (but you may know that it too has its dangers!) and/or you can choose to add a coloured highlight (any colour you want) to any or all of the changes that FRedit makes – so at least you can see what it has changed.

The FRedit files, including the instruction manual, are downloadable from my website at (www.archivepub.co.uk/documents/FRedit.zip). These include full instructions as to how to install the FRedit macro and how to use it. There’s also a library of ideas of things that you can do with FRedit plus a section containing hints and tips that will help you to build up your efficiency in using FRedit.

The FRedit macro listing is only given here to make it easier if you want to update to the latest version. Please do not try to use FRedit unless and until you have read the instruction manual – you wouldn’t buy a chainsaw and start to use it without at least reading the instructions, would you?!

N.B. FRedit now works on either the whole text, or just the selected text

Sub FRedit()

[bookmark: _Toc164352996]FRedit’s younger brother – MarkIt
[bookmark: _Toc55977195][bookmark: _Toc55977197]You can use FRedit to just mark some items with highlighting or font colouring, but here’s a quick and easy way to do it.

You create a list of words, phrases and/or wildcard finds, and onto each, you add an attribute or attributes. Here’s a sample list to give you a flavour:

| Find vocative comma errors (use wildcards)
[!,] name[,.\?\!]'
[!,] my dear[,.\?\!]'
[!,] father[,.\?\!]'
[!,] mother[,.\?\!]'

| Find forbidden dialogue tags. May need to amend for style, and for tense.
shrugged, "
smiled, "
nodded, "
shrugged, '
smiled, '
nodded, '

| Find speech at end of a para that is not closed with a full point
| Need to use highlight,
| but you can’t show highlights of the forum
,"^p
,'^p

| Find paras closed by a comma instead of a full point.
,^p

| Find commas followed by a cap (not I)
, <[A-Z][a-z]

| Find speech that does not close with punctuation (note trailing space)
[a-z]"
[a-z]'

| Find paras closed without a full point. Search for body text style, wildcards on.
[a-z]^13

For any of the items of text (or any WC find) in the MarkIt list that has one or more of the following attributes applied, then over in your target document, that attribute(s) will be applied to the text:

– highlight (any colour)
– font colour (any colour)
– underline
– bold
– italic

But any line in the MarkIt list that doesn’t have at least one of those attributes will be totally ignored.

Alternatively, if you have a line that you don’t want to be used, e.g. it’s just a comment for your own benefit then you can:

– start the line with a vertical bar ‘|’
| This is a comment line

– apply a strikethrough
This line is ignored

The latter is ueful because you might decide, one day, that you don’t want to mark certain of the items in the list; if so, just strike them through. Then you can remove the strike-through, or just close the file and don’t save the changes.

One application for MarkIt would be to use SpellAlyse to create a spelling errors list, then go through it and add highlight or colour to any items that you want marked, then run MarkIt – any unmarked words in the spelling errors list will simply be ignored by MarkIt.

But remember that if you want to mark a word like ‘etc’, you will need to take care, else you’ll get:

	‘Fetch some etchings and sketches and a bottle of ketchup!

(Be careful what you wish for!)

Rather use the item:

<etc>

which will be activated by MarkIt as a wildcard find.
[bookmark: _Hlk129791118]
MarkIt, like FRedit, is case sensitive, but if you want an item to find any case, then add a ‘bent pipe’ in front:

¬word

The item above will give you: My word! Microsoft Word is useful.

Sub MarkIt()

[bookmark: _Toc164352997]11 Pre-editing tools ____
Here are a few macros, some of which you might want to use before you actually start the sentence-by-sentence reading of your text. The idea is that if you can get macros to change a lot of the obvious and repetitious things, you will be better able to concentrate on the really skilled part of the job – making sure that the text says what it is meant to say.

The most powerful single macro is FRedit, and there’s only a brief introduction to it in this book – it has its own documentation. Then this section also covers ways in which you can add typesetting codes to your book (<A>, , <C> etc – although this can also be done with FRedit), ways of combining and dividing up the files that form your book, a macro to create a list of all the acronyms in a file, macros to pull all the tables and/or figures out into a separate file, and other macros to ‘do things with’ tables, frames and textboxes.

These are then followed by macros that ‘do things globally’ with footnotes and endnotes, bookmarks, comments and styles. And there’s a miscellany of other things that you might want to do before you start to read the script.
[bookmark: _Toc164352998]FRedit hint – switch track changes on
On the final (long) chapter of my last job, I forgot to switch on track changes before running FRedit, and I didn't notice until I got well into the editing. That caused me a lot of hassle because important changes went untracked. Arrgghhh!

Not any more! FRedit has a facility such that I can add a line at the top of the FRedit list:

| Track = yes

If track changes is off, it opens a window to warn me that it’s off, and it won’t let FRedit go ahead until track changes is switched on.

[bookmark: _Toc55977198][bookmark: _Toc164352999]FRedit hint – using FRedit on multiple selections
(Video: https://youtu.be/oDst93YCLC0)

I’ve discovered a new Word feature on the Home tab: Home—Editing—Select. This throws up a menu including the action: Select All Text With Similar Formatting (No Data). Not a snappy title, but if you click, say, in the heading above, and enact this feature, then it and all the similar level headings will be selected, i.e. all selected at the same time.

You could then, say, apply a different font colour.

Unfortunately, if you get ambitious and try to run FRedit to make changes to all those selected headings, it doesn’t work – it only works on the final selection in the document.

So, I added a feature to FRedit (see the FRedit Instruction file for details) so that you could make your multiple selections, then use the Font window to apply a strikethrough to those selections, and FRedit would then work the opposite way round from normal, i.e. it would ONLY edit text that had a strikethrough, as opposed to NOT editing any text that had a strikethrough.

It works, but it’s a bit tortuous! (But see below)

Instead, this macro will do the following, after you have made your multiple selection:

[bookmark: _Hlk54175231]1) Apply ST to the whole text
2) Remove ST from the multiple selection
3) Run FRedit
4) Remove ST from the whole text

Sub FReditSelect()

[bookmark: _Toc55977199]This macro does the same as the previous macro, but all you have to do is open your FRedit list, click in a heading (assuming it’s the headings you want to apply the FRedit list to) and run the macro. It does automatically what you had to do manually above, i.e. within the macro, it does the Select All Text With Similar Formatting.

It’s called ‘FReditHeadingsOnly’ because headings seemed the most likely target for FRedit-ting ‘all similarly formatted text’, but it can be used for any text. For example, you could edit only the text that’s in Normal style.

Sub FReditHeadingsOnly()
[bookmark: _Toc164353000]FRedit hint – checking your FRedit list
(Video:youtu.be/Z7cjf446JWM)

It’s all too easy when creating a FRedit list to introduce unintended styles and font size/name changes. They might not be obvious to the naked eye, so this macro checks the list for any funny styles and font sizes/names. They may be deliberate on your part, which is fine, but if so just click and move on.

The macro also warns you about lines that don’t have a pad character. That, too, can be deliberate, if you’re using two-line F&Rs for style changes, but again, at least you’re prompted to check.

The macro starts its checking from the current line, and stops at the first possible problem.

Sub FReditListChecker()

[bookmark: _Toc55977200][bookmark: _Toc164353001]Scripted F&R – simplified version of FRedit
(It’s a bit like a FRedit trainer – a flight simulator for a trainee pilot, though you can actually use it to do some useful jobs.)

For this simplified version of FRedit, all you need is a list like this, of the words you want to change:

favor|favour
Favor|Favour
color|colour
Color|Colour
center|centre
Center|Centre

That has to be in one Word file, open on screen, then open the file on which to make these global changes; then run the macro.

That’s it! That’s all you need to know.

(However, if you’re feeling brave and want to try other things, keep going, and I’ll drop in some learning points [LP].)

Copy the following list and paste it into your ‘list’ file. Then find an old file of text to “play with” and then try to change it by using this list and see what happens:

that|that
which|which
the|the

[LP: Changing something with the same thing has no effect, except to add a highlight.]

Then you could try and see what this does:
¬the|the

Can you see what that did? It did something that the|the didn’t do.

[LP: The “¬” character says “change text regardless of its case; upper or lower”.]

Still feeling brave? OK, try copy-and-pasting this list:

| Double space to single space
^32^32|^32

| spaced hyphen to spaced en dash
 - | ^=^32

| Double return to single return
^p^p|^p

[LP: The “^32” is exactly equivalent to “ ”, but it’s easier to see! (32 is the ASCII code for a space.)]
[LP: Any line starting with a vertical bar is ignored by the macro.]
[LP: The “^p” is one of many Word codes. For more, click Ctrl-H: Find and Replace — More >> — Special.]

Feeling positively heroic? Then try this:

| A wildcard search for number ranges: hyphen to en dash
~([0-9])-([0-9])|\1^=\2

[LP: The “~” says the rest of this line is a wildcard F&R.]
[LP: If you find wildcards a bit scary, don’t worry, just copy other people’s – see the FRedit library.]

One final thing to try, but this time, switch track changes ON before running the macro:

| Double space to single space
 |^32

| spaced hyphen to spaced en dash
 - | ^=^32

| Double return to single return
^p^p|^p

| A wildcard search for number ranges: hyphen to en dash
~([0-9])-([0-9])|\1^=\2

[LP: Any line with the single strikethrough attribute added will not be tracked, even if track changes is ON.]

Sub FReditSimple()

[bookmark: _Toc55977201][bookmark: _Toc164353002]Scripted F&R – a simple FRedit-like tool
(Video:youtu.be/DfAGD9RCpNQ)

This is an even simpler system than FReditSimple, and is aimed at doing a useful job, very quickly. However, it’s not aimed at training you to use FRedit, because it has a different way of working.

At the end of the file you want to work on, type a hash (#) followed by two or three blank lines. Select from the hash to the end of the file and make sure it is in Normal style and pure text. (I use the macro NormaliseText, but I assume there’s a way of doing it off the toolbar, though I can’t see where, sorry!)

On lines following the hash, you could do things like the following. See if you can guess what each will do, when I run the macro.

#
toolbar
FRedit
et al
-ise
-isi-
-our
-ment

The first highlights every occurrence of ‘toolbar’, the next two change the words to italic, but note that the third line will not do this: “The parapet aligns with the feet along the edge.” it only applies the attribute to ‘et al’ as a separate pair of words.

Then, it’s highlighting words ending in ‘ise’, and ‘isi’ anywhere in the middle of a word, and ‘our’ and ‘ment’ at the ends of words.

Other features you can use are bold and font size, and they can be combined:

hello

and I’ve also added strikethrough:

bonjour

so that would stop ‘bonjour’ being thrown up as a spelling error by my spelling macros.

If you want to remove some effect, add an exclamation mark:
#
!toolbar
!FRedit
!et al

These would (1) remove the highlight and (2 + 3) remove the italic.

One possible application is to check where a word/words occur within a document – and here, I’d advise working on a copy of the document!

FRedit
toolbar-

(I’ve added the hyphen, so that it also catches ‘toolbars’.) Having run MiniFRedit, you can zoom right out, so that you can see lots of pages on screen at one go, and the occurrences of FRedit and toolbar will be clear to see.)

[image:]

Programmer’s extra: If you want to add other attributes, such as superscript, it’s not difficult. Add a line to read the attribute into this list:

 ' Check the attributes on this item
 myBold = tst.Font.Bold
 myItal = tst.Font.Italic
 mySize = tst.Font.Size
 myStrike = tst.Font.StrikeThrough
 mySuper = tst.Font.Superscript

and the add an item to apply it, such as:

 If myStrike Then
 .Replacement.Font.StrikeThrough = True
 If doUndo Then .Replacement.Font.StrikeThrough = False
 End If

 If mySuper Then
 .Replacement.Font.Superscript= True
 If doUndo Then .Replacement.Font.Superscript= False
 End If

(In fact, I thought I might as well add this anyway! So it now also does sub/superscript and underline!)

Sub MiniFRedit()

[bookmark: _Toc55977158][bookmark: _Toc164353003][bookmark: _Toc55977202]IZ to IS spelling and vice versa
(See video: youtu.be/SXmAJrUCZ_I)

The main instructions are different for Mac and PC, so here’s Mac version first:

(N.B. Late addition: if you run these macros from within FRedit, using, say, DoMacro|IStoIZ, you have to be on hand to click Yes, when it asks if you want to edit the text. I’ve now added an option at the beginning of the macro to avoid this. This is especially useful if you’re using MultiFileFRedit. To stop the prompt being generated each time IStoIZ is run then change promptForConfirmation = True into promptForConfirmation = False.)

[bookmark: _Hlk163649416]The following two macros allow you either to highlight words that need changing or to actually change them. When you run the macro, it asks which you want to do.

MAC VERSION

The lists of exceptions need to be held in files (one for each macro) called ‘IS_words’ and ‘IZ_words’. (And for the IZIScount macro, you need both.) You can set up each macro so that it automatically loads the relevant file from your hard disc, but the macro needs to know where on your computer to find it. You therefore have to put the full filename of the exception file into each macro (and both into the IZIScount macro). To do this, navigate in a Finder window to the folder (directory) where these two files are held:

[image:]

To obtain the pathname, first right-click the file:

[image:]
Then, with this dropdown box visible, depress and hold the option key. ‘Copy’ will become ‘Copy “[filename]” as Pathname’. Still holding down the option key, click ‘Copy “[filename]” as Pathname’.

[image:]

The pathname will be copied to your clipboard. Paste it into the line near the beginning of the macro following the line ‘Address where … exceptions file is held’, replacing the pathname that is there at the moment. Suppose the pathname of my exceptions file is:

C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP

So now the line near the beginning of the macro:

mySFile = "C:\Documents and Settings\Paul\My Documents\IS_words.docx"

has to be changed to (shaded so you can see what I’ve added):

mySFile = "/Users/Paul/My Documents/Macro stuff/IS_words.docx"

(or whatever it is on your computer).

The two lists of exceptions are among the IS/IZ macros in the TheMacros file.

(Now jump to after the PC version for the final bit...)

PC VERSION

The lists of exceptions need to be held in files (one for each macro) called ‘IS_words’ and ‘IZ_words’. (And for the IZIScount macro, you need both.) You can set up each macro so that it automatically loads the relevant file from your hard disc, but the macro needs to know where on your computer to find it. You therefore have to put the full filename of the exception file into each macro (and both into the IZIScount macro). To do this, navigate to the folder (directory) where these two files are held:

[image:]

If you click on the down menu arrow to the right of the line showing the string of folder names, the full path name appears:
[image:]

Click Ctrl-C to copy this and add it into the line at the beginning of the macro. Suppose mine is:

C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP

So now the line at the beginning of the macro:

myFile = "C:\Documents and Settings\Paul\My Documents\IS_words.docx"

has to be changed to (shaded so you can see what I’ve added):

myFile = "C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP\IS_words.docx"

(or whatever it is on your computer).

Finally for both Mac and PC

The two lists of exceptions are on the website: IS_words IZ_words.

IZ_words

IS_words

If you discover other words that are exceptions, please email them to me so that I can update these as central lists. I have dated the lists so that you can check if you’ve got the latest version. I’ve put a yellow highlight on the proper nouns, because they may look a little funny; the macro requires the words to be in lowercase.

N.B. You don’t need words like ‘disabled’ and ‘misapprehension’ in the list (and there are a lot of them!) because the macro ignores ‘isa’ if it’s too near the beginning of the word.

The IStoIZ macro takes account of the fact that, in UK English, analyse, catalyse, paralyse and hydrolyse keep the ‘ys’ form, but not in US English. It senses what the main language of the text is, and acts accordingly.

You can select the highlight colour at the beginning of the macro:

highlightColour = wdTurquoise

And/or you can select the font colour at the beginning of the macro:

textColour = wdTurquoise

If you don’t want the is/iz words changing in certain parts of the file (e.g. quotations and/or references lists) you can ‘protect’ the text (a) by using the strikethrough font feature (this is the same feature as is used with FRedit) and/or (b) by specifying the style names using the line near the beginning of the macro: nonoStyles = "Display Quote,References List", so just include your particular style name(s) in between the quotes.

You don’t have to have the is/iz words both track-changed and highlighted. However, if you do want them both track-changed and highlighted, change the option line to:

bothTCandHighlight = True

The text of ‘IZ_words’ file is in among the macros on the website.

IZwords

Similarly for the ‘IS_words’ file:

ISwords

You will have to put them each in a Word file and save them with the names ‘IZ_words’ and ‘IS_words’.

The actual macros are:

Sub IZtoIS()

Sub IStoIZ()

[bookmark: _Toc164353004]German and French quotes
If you try to do a find and replace to change English quotes (“ & ”) with German quotes („ & “) or French quotes (« & ») then you might find the F&Rs don’t work. If so, this is probably because you’ve got the automatic curly quotes function set.

Three ways round the problem:

1) (Obviously, you could) turn off curly quotes, do the F&Rs, turn curly quotes back on.

2) Run the appropriate French or German macro below.

3) Use FRedit:

| German quotes
DoMacro|AutoCurlyQuotesOFF
“|„
”|„
DoMacro|AutoCurlyQuotesON

Or...

| French quotes
DoMacro|AutoCurlyQuotesOFF
“|«
”|»
DoMacro|AutoCurlyQuotesON

But number 3) assumes you’ve got the two macros loaded:

Sub AutoCurlyQuotesOFF()

Sub AutoCurlyQuotesON()

Sub GermanQuotes()

Sub FrenchQuotes()

[bookmark: _Toc55977203][bookmark: _Toc164353005]Ignore this text – apply strikethrough
(Video: https://youtu.be/AGyrZbgoTD0)

For use with FRedit and IStoIZ/IZtoIS, for example, (indeed, many of my macros now use strikethrough to say “Don’t do <whatever> to this area of text”) this applies the strikethrough attribute to a selected area of text, or rather, it toggles it, i.e. you can use it to add or remove the strikethrough attribute. However, if you don’t select any text, it removes the strikethrough attribute from the whole of the current paragraph.

Sub StrikeSingle()
[bookmark: _Toc55977204][bookmark: _Toc164353006]Strikethrough and colour selected text
Adds strikethrough and colour to the currently selected text. (It assumes you have macros ColourPlus and StrikeSingle already in your Normal template.) If no text is selected, it selects the current paragraph.

Sub StrikeAndColour()

[bookmark: _Toc55977205][bookmark: _Toc164353007]Strikethrough all URLs
This macro applies the strikethrough attribute to all URLs in the text. The idea here is to ensure that no URLs are edited by FRedit etc.

N.B. If there are URLs it misses, it will be because it contains a character that I haven’t thought of. Please let me know, and I’ll add it to the list at the beginning of the macro.

Sub StrikeThroughAllURLs()

[bookmark: _Toc55977206][bookmark: _Toc164353008]Strikethrough all equations
This macro applies the strikethrough attribute to all equations in the text. The idea here is to ensure that no equations are edited by FRedit etc.

Sub EquationsStrikeThroughAll()

[bookmark: _Toc55977207][bookmark: _Toc164353009]Strikethrough all code sections
This macro was written for a book where there were many sections of computer code in a particular style, called “computer_code”. So this macro applies the strikethrough attribute to those sections of text, so that any global F&Rs executed by FRedit didn’t alter any of the code.

I can’t quite remember now, but it looks as if there were also some lines starting with “//”, which I assume were comments, in editable English, i.e. they could be edited, so for those, the strikethrough was taken off. Then there were some lines, starting with “!”, which were also editable, so their strikethrough was also removed.

Sub CodeSegmentProtect()
[bookmark: _Toc55977208][bookmark: _Toc164353010]Highlight certain characters with attributes
(Video: youtu.be/DnG1XCuOUlk)

The idea here is to highlight things like italic commas that you might otherwise miss when reading the text. Here’s an example text with some funnies:

And/or a temperature of 20°C at a façade, or front panel, of the café – with light at a wavelength of 5000Å!
x > a2 + b2 − ½ab
y = b2 + c2 – ½bc

and then after running the macro, it will look like this:

And/or a temperature of 20°C at a façade, or front panel, of the café – with light at a wavelength of 5000Å!
x > a2 + b2 − ½ab
y = b2 + c2 – ½bc

If you want to highlight specific characters regardless of whether they are bold/italic, etc then you can do it easily in FRedit, e.g. the diacritics:

~[áÁàÀâÂäÄÃãÅåçÇéÉèÈêÊëËíÍìÌîÎñÑóÓòÒôÔöÖõÕøØßúÚùÙûÛüÜýÝÿŸ]|^&

But to highlight, say, only the italic superscripted numbers, as in those equations, or the italic comma after ‘façade’, then it’s not so easy in FRedit, hence this macro (although it also

You can set up the macro (and you could have, say, two different version of the macro, with slightly different names and for different purposes/clients) using the variables at the beginning of the macro:

superscriptZeros = wdBrightGreen
italicCommas = wdBrightGreen
boldColons = wdPink
notBoldColons = 0
subSuperscriptSpace = wdGray50

' Just super and subscript numbers in italic
subSuperscriptNumberItalic = wdYellow

' All numbers in italic
allNumberItalic = wdGray25

' Various symbols - your choice
variousSymbols1 = wdPink
mySymbols1 = "[áÁàÀâÂäÄÃãÅåçÇéÉèÈêÊëËíÍìÌîÎñÑóÓòÒôÔöÖõÕøØßúÚùÙûÛüÜýÝÿŸ/–]"

variousSymbols2 = wdYellow
mySymbols2 = "[=*\>\<+" & ChrW(8722) & "]"

' Various symbols in italic - your choice
' (e.g. parentheses, exclamation mark and ½ symbol = 189)
specificSymbolsInItalic = wdTurquoise
mySymbols3 = "[\(\)\!" & ChrW(189) & "]"

Hopefully this should be reasonable self-explanatory, but the notBoldColons = 0 means don’t highlight the non-bold colons. (This one is aimed at where you’ve got lists with bold headwords followed by a colon – should that colon be bold or not? You can highlight the ones that are not as intended.

Sub HighlightCertainCharacters()

[bookmark: _Toc164353011][bookmark: _Toc24712750][bookmark: _Toc55977209]Highlight all italic text
This a simple macro to do a find and replace simply to add a highlight to all italic text.

Sub HighlightAllItalic()

[bookmark: _Toc164353012]Highlight all equations
I come across two types of equations: MathType and Equation Editor. Here’s an example, copied out of a real, live book:

 at and ,

The first is MathType and the second is Equation Editor. (And yes, well spotted, both use superscripted letter-o’s, and yes, italic in the second case.)

The highlighting you see above is what this macro adds. The point is that, without the highlight it looks like this:

 at and ,

(a) it’s not clear that the two use the different equation formats
(b) it’s less obvious that there’s no space in front of ‘and’. (But I don’t know if that matters – do typesetting packages like InDesign automatically pick up on that sort of thing?)

(In case it’s useful, I’ve added the option to highlight the other method of creating (bits of) equations: Symbol font. And don’t forget that Symbol font Greek characters can be changed to Unicode characters by using FRedit – see the FRedit library.)

Sub EquationsHighlightAll()

[bookmark: _Toc55977210][bookmark: _Toc164353013][bookmark: _Hlk109461590]Highlight all ‘equations’ that are actually now bitmaps
Unfortunately, sometimes ‘equations’ do lose their editableness and become bitmap images.

But before you freak out totally, just check the filetype of the file. Sometimes, I’ve been able to rescue uneditable equations, where someone has saved a .docx file as the older .doc filetype, which doesn’t support equations in the same way. So sometimes, if you do a Save As, and change the filetype from ‘Word 97-2003 Document’ to ‘Word Document’ the equations will jump back to life. Phew!

If not then this macro will highlight all the ‘equations’ that are now actually uneditable bitmap images.

[bookmark: _Toc55977211][bookmark: _Toc164353014]Space out MathType equations in running text
If, having highlighted the MathType equations, you can see that some of them need spaces adding, you can add them manually, of course, but this macro checks all the MathType equations in the current paragraph and, where necessary, adds spaces.

In the example, “if the temperature or , at the surface ()”, only the first one needs a space, as the second is next to punctuation, and the third is in parentheses. The macro knows when to add a space and when not.

Sub SpaceEquationsInPara()

[bookmark: _Toc55977212][bookmark: _Toc164353015]Space out MathType equations in whole text
This does the whole file at one go. (I forgot I’d done this when I wrote the macro above!)

Sub EquationSpacer()

[bookmark: _Toc55977213][bookmark: _Toc164353016]Convert all Equation Editor items to text
In one job, the author used MathType for the actual equations, but Equation Editor in the running text for, e.g. “where is the length of time and is the coefficient of whatever”. So, rightly or wrongly, I decided to convert all the Equation Editor items to pure text. This macro does that, highlightling them, as it goes; they come out in roman, so they need to be italicised.

Sub EquationsConvertAll()

[bookmark: _Toc55977214][bookmark: _Toc164353017]Mark all quotations
(Video: youtu.be/PB0hXA_1tRo)

This is a multi-purpose macro that finds all the text in quotation marks (single and/or double) and all displayed text (i.e. text that has a left margin indent), and marks it by using any or all of:

a) strikethrough (or double strikethrough)
b) highlighting (your choice of colour)
c) font colour (your choice of colour)

The original reason for the macro was that if the quotations are struck through, then FRedit and IStoIZ/IZtoIS will not then make any changes to them. But then I added the font colouration because, once you’ve used FRedit and IStoIZ/IZtoIS, you’ll probably want to remove the strikethrough so that you can more easily read the text. If those quotations are also in a different font colour then you will be able to see which bits of the text have indeed been protected from the effects of global changes.

Then the other major application of this macro is that you can get it to only mark long quotations, i.e. more than a certain number of words. This is to enable you to see which quotations ought to be displayed rather than being left inline. This is why I added the option to highlight the quotes because now, as you read through the text, and are alerted to which are the long quotes, and you can use the macro DisplayQuote. So you just click somewhere in the highlighted text, and run DisplayQuote – it will then add carriage returns to make the quotation a separate paragraph, and the delete the quotation marks and (optionally) add whatever formatting and/or style you want for your displayed text.

And then the other thing that this macro can do is to add coding (<DIS> and </DIS>, or whatever), and the latter code can optionally be on the same line or the following line.

All the optional features are set up within the first few lines of the macro, but if you want to use this macro for two distinctly different applications, remember that you can make a copy of the macro, calling it, say QuotationMarker2.

For example, you could have one version of the macro that marked all the quotes and then another version that marked just the long quotations in a different colour.

N.B. Working out how to tell the difference between a close quote mark and an apostrophe was an interesting challenge. Take for example:

‘Aren’t the boys’ books on the ’phone table?’ he said.

compared with...

rounded ‘pebbles’ scattered individually. It turned out that we had discovered dinosaur eggs – a dinosaurs’ nesting ground!

The quotation (‘pebbles’) looks like a plural possessive but isn’t, and then it’s immediately followed by a plural possessive. Compare that with…

He talked about ‘the pebbles’ various colours that showed that we had discovered the eggs of dinosaurs,’ so it was a nesting ground!

…and if you can see a logical way of telling me the difference between those two, I’d like to hear from you!

Anyway, I’ve now got the macro to check for a situation like this, and mark it with a font colour:

rounded ‘pebbles’ scattered individually. It turned out that we had discovered dinosaur eggs – a dinosaurs’ nesting ground!

It also sets up the find and replace so that you can search through and check them all.

More importantly, you will have problems if the author has got unpaired quotation marks, or if some of the quotation marks are the wrong way round – the macro simply won’t cope. These have to be sorted before you run the macro, but here are some suggestions.

For unpaired quotation marks, what I suggest you do is, before running the macro properly on the working file:
– copy the whole text
– create a new blank document
– paste as pure text
– run the macro
– wind the display out to 20% or whatever, so that you can see lots of page at once

If you can then see any large areas of marked text, these are likely to be where the author has missed a close quote mark, so correct these and try again.

One trick to avoid the wrong-way-round quotation mark problem is to do a quick FRedit F&R:

'|'
"|"

and Word will correct any back-to-front quotation marks – but it only works if you’ve got the auto-curly quotes option in Word switched on.

And, of course, the macro relies on there being curly quotes, so it won’t work at all with straight quotes. But the hint above will also encurl your straight quotation marks for you.

Finally, if the text has footnotes and/or endnotes, the macro will mark them too, unless you tell it not to do so.

Oh, and to remove single strikethrough, use the macro SingleStrike. Select all text and run it.

To remove all colour, select the whole text and run ColourMinus. To remove just that colour, and leave any other font colouration intact, I think you can use UnHighlightAndColour.

So here are all the options at the beginning of the macro with a bit of explanation:

' Do you want displayed text marked?
markDisplayed = True
If you make it False, it will then ignore text with an indented left margin.

' Add coding to existing displayed quotes?
addCodes = True
Do you want codes adding?

These are the codes…
preCode = "<DIS>"
postCode = "</DIS>"

Do you want the final code at the end of the final line or at the beginning of the following paragraph?
codeOnNextLine = False

' Minimum length of quotes (words)
minLength = 4

If you want all quotations to be marked, regardless of length, set this equal to zero.

' Minimum indent of quotes (cm)
minIndent = 0

This is helpful if there is text that is indented but that is not displayed text. Hopefully the displayed text is the most indented text (otherwise you’re scuppered!). So if the text with a 1.0 cm indent is not displayed text, but the displayed text is, say, 2.0 cm then set this variable to, say:

minIndent = 1.1

' Colour the font of quotations
colourFont = True
myColour = wdColorLightBlue

True or False decides if this feature is used. Other colours you might want to use include: wdColorRed, wdColorBlue, wdColorPink, wdColorBrightGreen.

' Colour of the possible plural possessive problems
possessiveColour = wdColorRed

The colour for any possible possessive plural problems.

' Add a highlight
highlightText = True
myHighlight = wdTurquoise

True or False decides if this feature is used. Other colours you might want to use include: wdYellow, wdTurquoise, wdBrightGreen, wdPink, wdRed, wdGreen, wdDarkYellow, wdGray25, wdGray50.

' Strike it through
strikeSingle = True
strikeDouble = False

Take your pick, but you can’t have both true.

' What kind of quote?
doDoubleQuotes = True
doSingleQuotes = True

You can mark either single quotes or double quotes or both.

' Do you want the notes checked?
doFootnotes = True
doEndnotes = True

If there aren’t any foot/endnotes it doesn’t matter, so you only need to make either of these False if you definitely don’t want it to mark the notes.

Sub QuotationMarker()

[bookmark: _Toc55977215][bookmark: _Toc164353018]Run a FRedit list
If there’s a FRedit list that you run regularly then you can set up a macro so that it loads the FRedit list, runs FRedit and then closes the FRedit list. The listFile = line sets the full filename of the FRedit list, including the file path.

To find the full filename of the FRedit list, open the list file and then run this macro:

Sub FullNameType()

And here’s the FRedit-calling macro:

Sub FReditListRun()

[bookmark: _Toc55977216][bookmark: _Toc164353019]Run a FRedit List from a menu of lists
(Video: youtu.be/1bVduGAFrhU)

If you have a repertoire of different FRedit lists that you want to use, this macro will allow you to select a FRedit list from a menu. Place all your different FRedit lists in one directory (preferably using names with significant initial letter – you’ll see why in a minute), and add the address of that directory to the head of the macro. If the directory name is MyLists, the line might be:

MyDir = "C:\Documents and Settings\Paul\My Documents\MyLists\"

When you run the macro, it scans that directory and creates a menu such as:

[image:]

Note that it uses the initial letter of the filename as its input device. If there are two FRedit lists with the same initial letter, the second one is given a double letter as input. If you try to have three lists with the same initial letter, it says, “You can’t do that!” :-)

So type in the relevant letter(s) and press <Enter> or click OK; it will then load up that FRedit list, run FRedit and then close the FRedit list file.

Sub FReditListMenu()

[bookmark: _Toc55977217][bookmark: _Toc164353020]Multifile FRedit
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

Now, if you think FRedit is dangerous, this is ultra-mega-dangerous! It will open every single file in turn in your file list (see below), edit them all, using the currently open FRedit list, and resave each edited file – so as the edited files have now been saved, there’s no undoing what you’ve just done.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP
Macro Jobs.doc
Roman cats.doc
Stats.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not ignored) files, opening each one and, using the current FRedit list, editing them and resaving them. The terrible deed is done!

Don’t say I didn’t warn you! :-)

MultiFileFRedit also gives you the option to accept all existing tracked changes in each file before doing you new set of F&Rs. To do this, set:

acceptAllRevs = True

This is probably a good idea, anyway, because doing global F&Rs on a file that already has track changes in it is fraught with danger, anyway.

IDEA! If you have a macro that you want to run on a whole list of files, resaving the file after running it, then MultiFileFRedit is your friend. All you would have to do is, if the macro is called MyMacro, then create a one-item FRedit list:

DoMacro|MyMacro

and run MultiFileFRedit.

But make sure that MyMacro really is a properly functionaing macro, bfore you try to use it on lots of files! (And make sure that you take a back-up copy of the files first – well, you would have done that anyway, wouldn’t you?!)

Sub MultiFileFRedit()
[bookmark: _Toc55977218][bookmark: _Toc164353021]Quicker creation of FRedit lists
(Video re spelling: youtu.be/W-JX3P1hZF8)
(Video re hyphenation: youtu.be/olyCyDzCDe8)
(SpellingSuggest gets a mention in video: youtu.be/FVt2ggFXf4A)

If you have a list of words (such as that generated by SpellingErrorLister) and you want to ‘do something’ with each of the various words, to prepare your FRedit list then there are several macros to help. Here’s a spoof sample list:

bubblechamber
envirnment
evaluted
flangoscope
intermal
managment
mnthly
projcet

Beveley
MTRQ
Pingson
Pongson
Propsing

Correcting the spelling automatically – For words like ‘envirnment’ and ‘evaluted’, you can use SpellingSuggest which, if run twice, will give you:

envirnment|environment
evaluted|evaluated

Simple as that! It uses Word’s spelling checker and accepts the first alternative suggestion, which in fact is usually correct.

(SpellingSuggest also appears in the Editing section below, because it also corrects spellings in the body of a paragraph. e.g., if you clck in ‘clck’ in this sentence, and it will change it to ‘click’.)

Correcting spelling manually – If you use FReditCopy, it copies the word:

Beveley|Beveley

and then you can add the missing ‘r’.

Highlighting – If you want to use FRedit to highlight the word, using FReditSame twice would produce:

Pingson|^&
Pongson|^&

And once you’ve got the ‘^&’ in place, you can add various forms of ‘highlighting’, as per normal with FRedit: italic, bold, text colour, coloured highlights etc.)

However...

High speed highlighting – To speed things up even further, you can use FReditListProcess. The idea here is to work your way down the list, using SpellingSuggest or FReditCopy to correct the spellings, but if you just want to ‘highlight’ a word, just apply your chosen ‘highlight’ to the single word (italic, bold, text colour, coloured highlight and underline) and carry on down the list. And you don’t need to waste time deleting those words that are actually correct.

All you need to do, after doing the ‘highlighting’ and error corrections, is to go back up the list and use FReditListProcess. To illustrate, if this is your ‘highlighted’ and corrected list:

What does FReditListProcess do, and why?

bubblechamber
envirnment|environment
evaluted|evaluated
flangoscope
intermal|internal
managment|management
centr|centre
projcet|project

Beveley
MTRQ
Pingson
Pongson
Propsing|Proposing

then running the macro will produce:

envirnment|environment
evaluted|evaluated
intermal|internal
managment|management
centr|^&
~<centr>|centre
projcet|^&
~<projcet>|project

~<Beveley>|^&
~<Pingson>|^&
~<Pongson>|^&
Propsing|Proposing

Actually, I had to run it twice because it starts at the cursor but it stops when it gets to a blank line – useful if you only want to process a section of your list.

So you can see that it has deleted ‘bubblechamber’, ‘flangoscope’ and ‘MTRQ’ because these had no attribute applied to them.

Now, one of the commonest errors I make with FRedit is to forget about the danger of word-in-word occurrences, e.g. doing etc|etc. and then ending up with ‘Please fetc.h some etc.hings and sketc.hes’. Therefore, for each of ‘centr|centre’ and ‘projcet|project’, you will see that it has created two separate F&Rs. This is because, certainly in the case of the first F&R, it could generate false corrections: it would change ‘use a centring device’, to ‘use a centreing device’.

OK, so we could just use:

~<centr>|centre

which is fine, except what this would miss the error, ‘the BEVERLEY CENTR was opened...’ because wildcard F&R is case sensitive. So there is a second F&R introduced into the list: centr|^& which would therefore highlight ‘the BEVERLEY CENTR was opened...’ and it would highlight, ‘use a centring device’.
Doing this doubles the number of F&Rs, so I decided not to do this on longer words, such as ‘intermal|internal’. The limit is set by:

minLength = 7

It has also added the wildcard codes to the ‘copy’ items (Beveley, Pingson and Pongson) so that it only searches on whole words – maybe that’s a bit OTT, but it makes sure that, say, ‘McPongson’ doesn’t get erroneously highlighted.

Whether it adds a strikethrough to the copying items (to stop them being track-changed) is set at the beginning of the macro:

makeCopyingNotTracked = True

Hyphenation changes – If you have a HyphenAlyse table of frequencies, you will need to use FRedit to make any changes you need. HyphenationToFRedit allows you to create the FRedit list items at the bottom of the table. Then you can copy them into your main list.

Here’s an example:

	ni-au. . . . 1
	
	

	nitride-based. . . . 1
	nitride based. . . . 5
	

	node-to-ground. . . . 1
	
	

	noise-induced. . . . 1
	
	

	no-load. . . . 1
	
	

	non-coaxial. . . . 1
	
	

	non-communication. . . . 1
	
	

	non-conducting. . . . 1
	
	

	non-device. . . . 3
	
	

	non-flammable. . . . 1
	
	

	non-isolated. . . . 10
	
	

	non-linearity. . . . 2
	
	

	non-linear. . . . 10
	
	nonlinear. . . . 1

	non-linearity. . . . 2
	
	

	off-state. . . . 3
	off state. . . . 2
	

	on-state. . . . 9
	
	

So, clicking in the cell ‘nitride based. . . . 5’ and running the macro generates:

¬nitride-based|nitride based

Clicking in ‘nonlinear. . . . 1’ produces

¬non-linear|nonlinear

i.e. you click in the cell of the word-format you want.

However, if you double-click on ‘nonlinear’, to select it (or just drag-select a bit of the text in that cell), the macro takes that to mean that you want both options:

¬non linear|nonlinear
¬non-linear|nonlinear

But you might want, say, to standardise on ‘off state’ and ‘on state’. For the former, you just click in the cell that says ‘off state. . . . 2’ and run the macro, but for ‘on state’, you just have to click in the empty cell under ‘off state. . . . 2’, and run the macro.

After it has placed the FRedit list item(s) at the end of the file, you can jump back to the line you came from by using my BookmarkTempFind macro.

Bringing text from other files – If I have some text in another file (such as ProperNounAlyse list) that needs to go into the FRedit list, just copy the text, click somewhere (anywhere) in the FRedit list, and run FReditCopyPlus. It creates a new line, pastes in the text, strips off any frequency data, adds the ‘|’ character and copies the text.

For example, suppose I had spotted an errant name in my ProperNounAlyse list:

Brosseau . . . 3
Brousseau . . . 2

If I click select, say, the first line and copy it, I can go into the FRedit list and run FReditCopyPlus, which would produce:

¬Brosseau|Brosseau

I can either change leave it as it is to just highlight the word, or change either the Find or the Replace word to effect a spelling correction.

Whether the macro adds the strikethrough (to stop it being track-changed) and/or the ‘¬’ (to make it case insensitive) and/or highlights it (and in what colour) are all set at the beginning of the macro – adjust to taste!

myColour = wdTurquoise
makeItCaseInsensitive = True
makeItNotTracked = True

Whole word search and replace – (FReditListProcess has probably made this redundant, but...) For some jobs such as automatic spelling correction, you may feel safer with whole-word F&R. So using FReditCopyWholeWord with the list:

this
that
tother

click, click, click gives you:

~<this>|this
~<that>|that
~<tother>|tother

Inverting items – If you have a FRedit item the wrong way round, then FReditSwap switches it back:

hello|goodbye

becomes

goodbye|hello

Sub SpellingSuggest()

Sub FReditCopy()

Sub FReditSame()

Sub FReditListProcess()

Sub HyphenationToFRedit()

Sub FReditCopyPlus()

Sub FReditCopyWholeWord()

Sub FReditSwap()

[bookmark: _Toc55977219][bookmark: _Toc164353022]Create a FRedit list from a proper noun query list
(Video: https://youtu.be/4Ln95a1Cqyc)

If you have one of the new-style proper nouns query lists, it’s very easy to generate items for your FRedit list. For example, this extract from a list:

 6 = 	Educaion . . . 1
 6 = 	Education . . . 1

 1 = 	Even . . . 3

 1 = 	Eves . . . 2

* 	Hernandez . . . 1
* 	Hernández . . . 3
* 	Hernendez . . . 1

 6 = 	Institute . . . 1	= F
 6 = 	Instituto . . . 1	= F

 	Jean . . . 1	= A
 	Joan . . . 1	= A

* 6 	Jose . . . 2
* 6 	José . . . 8
* 6 	Jusé . . . 1

If you click in ‘Hernández’ and run this macro, it looks for your FRedit list (i.e. an open file containing vertical bar characters: ‘|’) and types in:

Hernandez|Hernández

and you’d put the cursor in ‘José’, this time the macro would have generated two items:

Jose|José
Jusé|José

Sub ProperNounToFRedit()

[bookmark: _Toc55977220][bookmark: _Toc164353023]Create a FRedit list from a text list
(Video: youtu.be/AqREu_iJ2Yg)

This is a general tool: it takes a list, adds some text in front of, and after, every item, and then adds formatting to the list. You could use it to add a dash and a tab before, and a colon after:

this
that
the other

could become

–	this:
–	that:
–	the other:

To explain it, I'll give a specific example for a FRedit list:

Suppose you have a list of words that you want highlighted in the text, but you only want whole words, so you have to use a wildcard for each one, e.g.

~<color>|^&

So you start with the list:

color
colors
favor
favors
labor
labors

The start of this macro sets up the text before each word (or phrase), the text after each, and the kind of colouration/highlighting/italic/bold you want:

txtBefore = "~<"
txtafter = ">|^&"

doItalic = False
doBold = False

addColour = 0

addHighlight = wdYellow

The result is:

~<color>|^&
~<colors>|^&
~<favor>|^&
~<favors>|^&
~<labor>|^&
~<labors>|^&

Another example, might be if you want to colour each of the words if it’s followed by a comma, colon or apostrophe. If so, use:

txtBefore = "~<"
txtafter = "[,':]|^&"

doItalic = False
doBold = False

addColour = wdColorBlue

addHighlight = wdNoHighlight

The result would be:

~<color[,':]|^&
~<colors[,':]|^&
~<favor[,':]|^&
~<favors[,':]|^&
~<labor[,':]|^&
~<labors[,':]|^&

Sub FReditListCreate()

[bookmark: _Toc55977221][bookmark: _Toc164353024]Lines of text into paragraphs
If you have text, say from emails, or from PDFs, with lots of individual lines, and you want to make them up into paragraphs, you can, of course, use FRedit (see the FRedit library), but this is a single macro that does the necessary global F&Rs.

It may be that some lines have line breaks instead of paragraphs (use Show Formatting to see) – the macro deals with those. And/or the paragraphs may be delineated by double returns, so the macro deal with both.

It’s just the macro equivalent of:

^11|^32
^p^p|zczc
^p|^32
zczc|^p

Sub EmailFormatter()

[bookmark: _Toc55977222][bookmark: _Toc164353025]Text exported from PDFs (or from OCR)
When text is exported from a PDF into Word (or has been OCRred), there are usually some ‘issues’, though not always the same issues. FRedit is your friend here. You can make obvious changes for errors in the text such as:

̈ u|ü
̈ o|ö

Ligatures (fi/ff/fl/ffi) can come out in all sorts of fun formats.

Interestingly, I had one PDF in which all the ‘fl’s did actually came out as ‘fl’ but the ‘fi’s and the ‘ff’s were converted to ‘W’ and ‘V’ respectively!

So here’s the FRedit list that I used (though I can’t quite work out now how it’s supposed to work!):

~W([bcdfgjklmnpqstvwxz])|fi\1
~V([bcdfgjklmnpqstvwxz])|ff\1
~([a-z])W|\1fi
~([a-z])V|\1ff
~Wr([!io])|fir\1

(But I now have a macro solution to these funny characters in place of ligatures – see below.)

The other major issue I find is hyphenation. The problem comes two ways round:

1) Where words have been soft-hyphenated, the hyphens are still there, even when they shouldn’t be. For example, if ‘preparation’ has been split with a hyphen as ‘pre-paration’ or ‘prepar-ation’, it will need to be rejoined.

2) Occasionally, I’ve had PDFs where all the line-end hyphens have been deleted whether soft or hard. So, on the plus side, that means that ‘pre-<newline>paration’ would correctly appear as ‘preparation’, but then ‘two-<newline>dimensional’ (wrongly) becomes ‘twodimensional’.

But there are macros to help you – see below.

[bookmark: _Toc55977223][bookmark: _Toc164353026]Rejoining hyphenated words (1)
(The following macro is newer, and probably better, especially when combined with PDFHyphenChecker.)

This macro looks through a file, checks every paragraph (i.e. every chopped-up PDF line) that ends with a hyphen, and tries to link it with the word at the start of the next line. If the two part-words, when joined, form a valid word (e.g. ‘pre-paration’ becomes ‘preparation’), it is joined; however, the word ‘twodimensional’, being a spelling error, remains hyphenated.

The macro highlights the words that it has joined, so that you can check them. If you don’t want them highlighted, use myColour = 0.

Sub PDFsoftHyphenRemove()

[bookmark: _Toc55977224][bookmark: _Toc164353027]Rejoining hyphenated words (2)
(Video: youtu.be/iESM6OaGBm4)

If you select all the text in a PDF, copy it and paste it into a new Word file, the text will be there, but probably in individual lines:

Our aim is to compute jelly invariants of three-dimensional spaces. This chap-¶
ter begins with a few basics about jelly and then introduces the class of which¶
this is an example of the meaningless text I’m writing here, but I need an non-¶
linear example for the purposes of this illustration.¶

All this macro does is rejoin (apparently) split-by-hyphen words, so it will produce:

Our aim is to compute jelly invariants of three-dimensional spaces. This chapter¶
begins with a few basics about jelly and then introduces the class of which¶
this is an example of the meaningless text I’m writing here, but I need an nonlinear¶
example for the purposes of this illustration.¶

Then you can use PDFHyphenChecker to check the resultant file (see below).

Sub PDFHyphenRemover()

[bookmark: _Toc55977225][bookmark: _Toc164353028]Correcting wrongly un-hyphenated words (global)
Rejoined hyphenated words can produce errors, so first here’s a global macro, which may be a bit too dangerous, and then a selective one, which may be a bit slow – take your pick!

This macro looks through a file, checks the last word of every paragraph (i.e. every chopped-up PDF line) and tests to see if it’s a spelling error. If so, it tries to divide the word at various places to see if it can make it into two separate words. For example, it would divide ‘twodimensional’ into ‘two’ and ‘dimensional’, and then it puts back the hyphen which has presumably been deleted.

The macro highlights the words it has hyphenated in a colour of your choice. If you don’t want it highlighted, use hyphColour = 0.

Sub PDFhardHyphenRestore()

[bookmark: _Toc55977226][bookmark: _Toc164353029]Correcting wrongly un-hyphenated words (selective)
(Video: youtu.be/iESM6OaGBm4)

This macro starts from the current cursor position, and checks every paragraph until it finds one that ends with a spelling error. It then tries to split it up into two separate, correctly spelt words. Then it asks for your view on whether to continue. You can say yes, and it keeps the hyphenation, or no, and it restores the unhyphenated version. So you are saying it’s a correctly spelled word (perhaps a specialist word for the book’s subject). Or you can stop and edit the text by hand, if necessary.

As it goes through, in response to your decisions to accept the hyphenation or not, it creates a list of ‘OKwords’, at the end of the file. Then each time it finds an end-of-line spelling error, it checks against the OKwords list, and if you’ve already accepted it once, it simply ignores the ‘error’, and moves on, thereby saving time.

This OKwords list can also used by other spelling-related macros. In particular, if you run (the latest version of) SpellingErrorLister, it will check the OKwords list and not include any OKwords in the spelling error list that it generates.

Sub PDFHyphenChecker()

[bookmark: _Toc55977227][bookmark: _Toc164353030]PDFs with missing ligatures
In one PDF script that I converted to Word, all the ligatures had been converted to underline characters: ‘I _nd English people di_cult to in_uence, which causes some su_ering.’, where each is missing either ‘fi’, ‘ffi’, ‘fl’ or ‘ff’.

This macro finds each underline, then tries each of the ligatures in turn, and checks the spelling of the resulting word. If it’s OK (e.g. ‘_nd’ becomes ‘find’), it changes it into the new word. If none of the ligatures gives a recognised spelling (e.g. ‘John Black_eld’), it just highlights it.

Sub PDFunderlineToLigature()

[bookmark: _Toc55977228][bookmark: _Toc164353031]PDFs with missing ligatures (2)
On the job mentioned a few paragraphs above, specific ligatures were replaced by specific characters (‘fi’ became ‘W’ and ‘ff’ was converted to ‘V’). So this next macro deals with that. It looks for these characters, and tries to replace them by the relevant ligature, but if it makes an incorrectly spelt word, it leaves it alone.

It does make mistakes, of course. For example, if ‘fi’ is ‘W’, then the sentence, ‘We went on Wednesday.’ becomes ‘fie went on Wednesday.’ The ‘Wednesday’ is OK, but ‘fie’ happens to be a correctly spelt word.

No worries, just run the macro from within FRedit:

| Block off all ‘We’s
We|Wzczce

| Run the macro
DoMacro|PDFfunniesToLigatures

| Get rid of the dummy text
zczc|

You can set the characters for each ligature at the beginning of the macro:

fi_Code = "W"
fl_Code = "U"
ffi_Code = "Z"
ff_Code = "V"

However, in the case I mentioned, the ‘fl’ and the ‘ffi’ had translated OK, so you can save time by only testing the ligatures needed, use:

fi_Code = "W"
fl_Code = ""
ffi_Code = ""
ff_Code = "V"

Sub PDFfunniesToLigatures()

[bookmark: _Toc55977229][bookmark: _Toc164353032]PDFs odd ASCII codes for ligatures
In one job, I copied and pasted the text from the PDF into Word, only to find that the ligatures had come across as funny ASCII codes: 11, 12, 13 and 14. This is a little difficult and doesn’t lend itself to resolution via FRedit since, for example, 13 is the ASCII code for newline! So I had to use devious techniques.

You may never have this situation, but if you do, then try this macro, and if it doesn’t work right, let me know, and send me a sample file if possible, and I’ll tailor it to your situation.

Sub LigatureConverter()

[bookmark: _Toc55977230][bookmark: _Toc164353033]For OCR/PDF, underline all spelling errors
In order to see what’s wrong in a file, and how to convert it (with FRedit or with some of the following macros), it can be helpful to have all of the spelling errors within the file highlighted in some way. If you use underline as a way of ‘highlighting’ them then you can limit F&R to only the underlined text.

The two macros either underline all ‘spelling errors’, or try to work out which words might be proper nouns and ignore them.

Sub PDFspellAll()

Sub PDFspellIgnoreProperNouns()

[bookmark: _Toc55977231][bookmark: _Toc164353034]Multifile text compilation
(The latest version is demo’ed at: youtu.be/GE47DZ-ZkV0)

(Mac users! You should be OK with this macro, but if it does throw up any errors, please try using MultiFileTextForMac, which works slightly differently, but is not as fully-featured as the main macro. Do ask if you have any problems.)

(N.B. If you have Word 365, this macros the MultiFileText macro can actually combine the PDFs into a single Word file for you.)

If you have a book made up of a set of separate files, it might be helpful to have a single file containing the text of the whole book. So that’s what this macro does.

As with my other multifile macros, the macro gets you to identify the folder containing the files by bringing up the Open File window. Navigate to the required folder and click ‘Cancel’. (If you’re using MultiFileTextForMac, click ‘Open’ instead.) The macro then asks whether you want to work on all the Word files in that folder. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Documents and Settings\Paul\My Documents\myNewBook
Chapter_1.docx
Chapter_2.docx
Chapter_3.docx
Prelims.docx

N.B. If chapters 1–9 have a leading zero, they’ll come in the correct alphabetical order: Chapter_01, Chapter_02, etc.

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not ignored) files, opening each one and creating the compilation.

It opens each of the Word files in the list, copies the text and pastes the text into a single Word file. It doesn’t copy across any of the images or the text of the comments, but it does include the text of the footnotes and endnotes plus any text that appears in textboxes. However, no attempt is made to interleave the notes or the textbox text with the main text; rather, all this extra text is placed at the end of the text in a given file.

It also preserves any italic text in italic, and ditto for bold and superscripted text. This means that you can use the resulting file with DocAlyse, and it will correctly count how many ‘et al.’s are in italic, and also how many ‘funny degree symbols’ there are, i.e. superscripted zeros, O’s or o’s. And having bold text helps you to see where the headings are.

(Recent upgrade feature for FindSamePlace: If you have a file open that has been created by MultiFileText or MultiFileWord then if you click in a line and run this macro, it loads up the relevant original file and then finds the same line, so that you can look at the context.)

Sub MultiFileText()

Sub MultiFileTextForMac()

These macros are also available from:
http://www.archivepub.co.uk/LongMacros/MultiFileText
http://www.archivepub.co.uk/LongMacros/MultiFileTextForMac

[bookmark: _Toc55977232][bookmark: _Toc164353035]Multifile Word compilation
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

If you have a book made up of a set of separate files, it might be helpful to have a single file containing the text of the whole book. So that’s what this macro does. (A simpler alternative is ChapterFileLinker, below)

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Documents and Settings\Paul\My Documents\myNewBook
Chapter_1.docx
Chapter_2.docx
Chapter_3.docx
Prelims.docx

N.B. If chapters 1–9 have a leading zero, they’ll come in the correct alphabetical order: Chapter_01, Chapter_02, etc.

If you now run the macro again, it recognises that this Word document is a list of filenames and so it proceeds to work through the listed files, opening each one and creating the compilation.

One thing to beware of is that if you join together lots of files, the size of the resulting file might prove a challenge for your computer system. I have therefore added an option to deletes all the embedded pictures.

The option is set at the beginning of the macro, so if you want to keep the images, use:

deleteImages = False

There is also now an option to add a filename at the top of each file so that you can see more easily where one section ends and the next begins.

addTitle = True
myFontSize = 30
titleHighlightColour = wdYellow

Another addition is the option to either leave the foot/endnotes as linked notes or to copy and paste each set of footnotes and/or endnotes at the end of the text of each file. This is useful because otherwise the endnotes for the whole book will be right at the end of the document.

insertNotesWithinText = True

You can also decide whether or you want it to accept the track changes before concatenating the files:

acceptTCs = True

The text within textboxes can be a bit of a pain so rather than just leaving that text within the textboxes, there’s now an option to copy the text out of them boxes and embed that text as ordinary text within the file. The empty textboxes are then deleted.

embedTextboxText = True

Unfortunately, I haven’t found any way of working out, where, within each file, a given textbox is. I have therefore simply had to paste the textbox text at the end of the text of each file.

Also, you can unlink field, which makes the overall file less ‘complicated’, i.e. if there are still fields – say, linking section numbers to their citations in the text – these can get corrupted in the process of concatenating files, so you can choose replace these citations with pure text. However, if you unlink all fields then equations can get turned into uneditable ‘pictures’, so there are two options. I suggest using:

unLinkAllFields = False
unLinkFieldsExceptEqns = True

(Recent upgrade feature for FindSamePlace: If you have a file open that has been created by MultiFileText or MultiFileWord then if you click in a line and run this macro, it loads up the relevant original file and then finds the same line, so that you can look at the context.)

Sub MultiFileWord()

[bookmark: _Toc55977233][bookmark: _Toc164353036][bookmark: _Hlk151041600]Chapter file compilation
If you have split up a book into separate chapter files and now want to recompile them into a single file, you can use ChapterFileLinker.

[bookmark: _Hlk151040298]As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Documents and Settings\Paul\My Documents\myNewBook
Chapter_1.docx
Chapter_2.docx
Chapter_3.docx
Prelims.docx

N.B. If chapters 1–9 have a leading zero, they’ll come in the correct alphabetical order: Chapter_01, Chapter_02, etc.

If you now run the macro again, it recognises that this Word document is a list of filenames and so it proceeds to work through just the remaining listed files, opening each one and creating the compilation.

The macro saves the compilation file – in the same folder – as ‘allTheBook’. N.B. it will overwrite any existing ‘allTheBook’ file in that folder. This name is set (and can be changed) in the line:

bookName = "allTheBook"

Sub ChapterFileLinker()
[bookmark: _Toc164353037]Multifile references compilation
(This can be used to collect the text of foot/endnotes, even if they aren’t references.)

This works in the same multifile way as the two above, but this scrapes together all the references. One and the same macro will collect the references from all the files, whether they are in footnotes, endnotes or a section at the end of the main text.

The section containing the references has to have a heading, which you then identify at the start of the macro code. You can use a search something like:

refTitle = "^pReferences^p"

or

refTitle = "<H1>References"

(N.B. If there are footnotes or endnotes that aren’t references, then change the first line of the macro to collectNotes = False.)

Sub MultiFileReferenceCollator()

[bookmark: _Toc55977234][bookmark: _Toc164353038]Multifile track changes compilation
(Video: youtu.be/2hrfWRyDx18)

This macro goes through a set of files and creates a single file containing all the sentences that contain at least one track change.

Sub MultifileTrackChangeReport()

[bookmark: _Toc164353039][bookmark: _Toc55977235]Loading multiple files from a folder

At the beginning of a job, it might be helpful to load a specific set of files from the work folder. This macro does just that. Run it once to create a file list for the folder, then edit the list to just the files you want. Then in future, just open the file list and run the macro.

Sub MultiFileLoader()

[bookmark: _Toc164353040]Text-only version of current document
This is a sort one-off version of MultiFileText, in that it creates a text-only version of the current open document, but it preserves bold, italic, super- and subscript.

However, I find that, with large files, the F&Rs that it needs to do can be quite slow; worse still, after the macro has finished, and beeped at to to tell you so, it still hase to reformat the whole of the new document. If you click anywhere on the screen before the cursor starts flashing again (i.e. the reformatting is complete) then Word can crash.

So for macros such as ProperNounAlyse and SpellingErrorLister – where all you are interested in is the words – then I’ve done an absolutely pure-text version, CopyTextVerySimple, which is much quicker for large files.

Sub CopyTextSimple()

N.B. This used to be called: CopyTextWithSomeFeatures

Sub CopyTextVerySimple()

[bookmark: _Toc55977236][bookmark: _Toc164353041]Chopping into chapters
(Video: https://youtu.be/aRArJz6HmKI)

If a multi-chapter job comes to you as a single file, it can help greatly to edit it chapter by chapter, maybe using FRedit, as I have explained in Section 6 “Book editing – a possible workflow”.

This macro allows you to chop a file up semi-automatically.

N.B. The chopped up files will be stored in the same folder as the source file.

For this macro, I decided to try using video-only documentation. Please let me know if you find this helpful... or not!

Thanks.

Sub ChapterChopper()

[bookmark: _Toc55977237][bookmark: _Toc164353042]Chopping a file into sub-files, e.g. a book into chapters
This macro can be used to split any file into a set of smaller files based on where page breaks and/or section breaks occur, so it’s up to you to insert the necessary breaks. You can insert page breaks by using F&R, for example using Find: ^pChapter and Replace: ^mChapter.

When the macro is run, it asks you for the filename, offering you ‘Chapter’ as the default, but you can change it to something else, if you prefer, then press Return. So, by default, the filenames will be Chapter01, Chapter02 etc.

If your text has some prelims followed by chapter 1, you can set:

firstChapterNumber = 0

and then the prelims will be Chapter00, and chapter 1 will be Chapter01 etc.

As it stands, it will spilt the text every time either type of break occurs, page or section. However, if, say, you want to split only at section breaks, you can set, near the beginning of the macro:

myBreak = "^b"

If you’re using a Mac, you’ll need to set, near the beginning of the macro:

myPostfix = ".docx"

Sub FileChopper()

[bookmark: _Toc55977238][bookmark: _Toc164353043]List all files in a folder
(Video: youtu.be/AqREu_iJ2Yg)

If you just want to create a list of all the files in a folder – say for record-keeping, or whatever – then this macro does that. Navigate to the folder in question, then press Escape, and it will create the list. It can either create a list of just the Word files (.doc or .docx) or of absolutely all the files, as set by:

showAllFiles = True

Sub FileLister()

[bookmark: _Toc55977239][bookmark: _Toc164353044]Acronym list with frequency
Like the following macro, this creates a list of all the acronyms that occur in the currently open file, including mixed-case acronyms such as ‘SfEP’. The macro asks first if you want to list acronyms that include numbers. If you say ‘Yes’ then it includes acronyms such as BBC2, C2C and H2SO4.

The difference is that it also counts them, so you then know how often each acronym occurs. The other extra feature is that it highlights any acronym that occurs fewer than a certain number of times. This is useful if the client has a different way they want you to define once and/or repeatedly and/or in a separate file.

Is this the sort of thing your student wants?

The decision point as to whether to highlight an acronym or not is set at the beginning of the macro:

minCount = 3

Adjust to taste.

The final extra feature that it ignores any words in the source file that have a strike-through applied. The idea is that if, say, all headings are in full-caps, you can add strike-through to the heading styles (temporarily), and the headings will be ignored by AcronymAlyse.

N.B. Please test it initially with a dummy file with < 5000 words. And have it seeded with some known acronyms in it, so you can see if it's really doing what you expect.

The macro beeps at you every now and then, so that you know it’s not given up, but, as usual, please don't touch the mouse, while the macro is running.

Sub AcronymAlyse()

[bookmark: _Toc164353045]Acronym list creator
This creates a list of all the acronyms that occur in the currently open file, including mixed-case acronyms such as ‘SfEP’. The macro asks first if you want to list acronyms that include numbers. If you say ‘Yes’ then it includes acronyms such as BBC2, C2C and H2SO4.

It will also, optionally, create a FRedit list which you can then use to highlight all occurrences of each of the acronyms, so that you can see them in context. This is set by using createFReditList = True at the beginning of the macro.

On long files (20,000 words+), it can take quite a while to run, so if you want reassurance that it hasn’t given up trying, set doBeeps = True, at the beginning of the macro and it will beep after completing each stage of the analysis, so you know something is still happening.

Sub AcronymLister()

The list is created by copying the whole text, highlighting the whole thing and then, using F&R, removing the highlighting from those items we want to keep. So, clearly, we unhighlight all the capital letters (using [A-Z]); if we want numbers, we unhighlight [0-9].

The problem comes with mixed upper/lowercase words. How do you include, say, ‘SfEP’ but reject words that have a single capital because they are at the beginning of a sentence? What the macro does therefore is only to unhighlight a lowercase letter if it immediately precedes an uppercase one (using [a-z][A-Z]). This will not, therefore, find ‘BBCi’ but will lose the ‘i’ and you will end up with just ‘BBC’.

The original macro avoided this problem by going through the text word by word, checking each one in turn, but that was unusably slow.

[bookmark: _Toc55977240][bookmark: _Toc164353046]Acronym finder
Having got your list of acronyms, you might need to find what they stand for. The following macro looks at the selected text, say ‘TLC’ and sets up a wildcard F&R to enable you to look for, ‘a word beginning with t/T followed by a word beginning with l/L followed by a word beginning with c/C’. You can then look through the text to see if you can identify the right bit of text. You can then copy it and paste it into your acronym list.

Sadly, if you try this with a four-letter acronym, the wildcard search is just a bit too much for Word and it generates an error saying that the wildcard search is too complicated. So if you select a four-letter, the macro just looks for the first three letters and, the first time it finds something that matches, it selects the following word, just in case that’s the right definition for the acronym, so you can just click Ctrl-C to copy it. If it’s not right and you then got through to the next match, it’ll only be looking for the three first words.

Sub AcronymFinder()

[bookmark: _Toc55977241][bookmark: _Toc164353047]Create a list of acronyms and definitions
This macro assumes that, in the text, you have got things like “This is published by the British Broadcasting Corporation (BBC) and then edited my members of the Society for Editors and Proofreaders (SfEP) and concerns contacts with HM Revenue & Customs (HMRC).” It then looks through for the acronyms in parentheses and does its best to find the definition, prior to the acronym. It errs on the side of picking up too many words, on the basis that it’s easier to tidy up the list by deleting unwanted words, rather than having to look back through the text if any words are missing from the definition. From the above text, the macro creates:

Acronym list
BBC	by the British Broadcasting Corporation
HMRC	contacts with HM Revenue & Customs
SfEP	Society for Editors and Proofreaders

Sub AcronymDefinitionLister()

[bookmark: _Toc55977242][bookmark: _Toc164353048]Tagged uppercase words changed to small caps
The requirement here is to convert all words in a text that are in uppercase and have been tagged to be small caps. It assumes that it will be tagged as:

<sc>MY TEXT IN CAPS</sc>

And should end up as:

MY TEXT IN CAPS

But there is an option not to also delete the tags, which would give:

<sc>MY TEXT IN CAPS</sc>

(The person asking for this, also wanted “<th>/</th>” to be converted to a thin space, which is just a global F&R, added to the end of the macro.)

Sub TaggedTextToSmallCaps()

[bookmark: _Toc55977243][bookmark: _Toc164353049]Make formatting tag invisible (hidden text)

If you had to “edit” a reference looking like this,

<REF><BOOK><AU><SNM>Daley</SNM>, <GNM>J.</GNM></AU>, <AU><SNM>Wood</SNM>, <GNM>D.</GNM></AU>, and <AU><SNM>Chivers</SNM>, <GNM>C.</GNM></AU>.<YR>2017</YR>. <BTL>*Regional Patterns of Australia's Economy and Population*</BTL>. <LOC>Melbourne</LOC>:<PUB>The Grattan Institute</PUB>.</BOOK></REF>

It would be difficult, right?! And what if you wanted to do a Find for “Wood, D” – no way!

Is there a facility within Word to hide the tags? I don’t know, so please tell me if there is one, but my motto is: if in doubt, write a macro!

So, if you run this macro, you get:

Daley</SNM>, <GNM>J.</GNM></AU>, <AU><SNM>Wood</SNM>, <GNM>D.</GNM></AU>, and <AU><SNM>Chivers</SNM>, <GNM>C.</GNM></AU>.<YR>2017</YR>. <BTL>*Regional Patterns of Australia's Economy and Population*</BTL>. <LOC>Melbourne</LOC>:<PUB>The Grattan Institute</PUB>.

Which is both readable and editable. And you can now search for “Wood, D”!

Run it again, and the tags reappear.

Sub TagsShowHide()

[bookmark: _Toc55977244][bookmark: _Toc164353050]Acronyms to small caps
The requirement here is to convert all acronyms in a text to small caps. It works on either a selection or, if no text is selected, the whole of the file.

It defines an acronym as any complete word that consists of all capital letter, as long as it is three characters or more. This limit is set in the macro as:

minLength = 3

Sub AcronymsToSmallCaps()

[bookmark: _Toc55977245][bookmark: _Toc164353051]Highlight incomplete paragraphs
This is difficult to describe, but I find it very useful. The macro looks for any paragraph that does not end in a suitable punctuation mark and, for any it finds, it highlights the very last character

This is in case you miss something like the fact that the previous paragraph, which didn’t have a full point

And neither did that one, but at least you were alerted!

OK, it will also highlight the final character of every heading, but I decided I could live with that. But you can opt for the macro not to highlight any paragraph with fewer than, say, 20 words (or whatever number you want to set), which means only long heading get their final character highlighted.

But if you want all unfinished paragraphs to be highlighted whether they are bold or not then use:

minWords = 0

at the beginning of the macro.

Other options that the macro has are set with:

mySoftColour = wdColorBlue
' or for no colouration inside tables
mySoftColour = wdColorAutomatic

addLightColour = True
myLightColour = wdGray25

underlineLineFeeds = True
underlineQuoteNoPunct = True

minWords = 10

The idea of the first is that for text inside tables, you don’t always want every paragraph to have a punctuation mark, so in a table, instead of using, say, a bright green highlight (very ‘in yer face’), it uses a font colour (or not even a font colour – see the option above).

The ‘light colour’ of the second option is that which is applied to all full stops at the ends of paragraph – but you can switch it off altogether.

The final two are if you want (1) to put at underline on either or both one of those rogue linefeed, that can cause problems (it has to be underline, because a highlight would be invisible!) or (2) underline cases where the final character is a close quotation mark, and there’s not punctuation mark immediately in front of it.

Also, if you want to remove the highlighting applied – perhaps so you can make some global changes to the file and then rerun the macro to check if your changes have done the trick – simply select a bit of text, and the macro will ask you if you want to remove the existing highlighting.

Sub ParagraphEndChecker()

[bookmark: _Toc55977246][bookmark: _Toc164353052]Sort a list and remove duplicates
(Video: youtu.be/Yx97w8XJ6iE)

Here are two functions that might be useful when dealing with acronym lists – or indeed any other sort of list. The first is not rocket science – it just sorts the selected text. Once the list is sorted, the second macro removes all identical adjacent lines, i.e. removes the duplicates from your list.

If no text is selected, each macro assumes you want to sort and/or remove duplicates from the whole text – but it does ask you first.

And there’s now a combined macro that does both.

And now the DuplicatesRemove macro has the ability to do the removal case-insensitively (or sensitively), by the setting of:

anyCase = True

or False.

Added feature: I wanted to compare two lists (the macro names on my laptop and those on my desktop) and delete from the list any names that appear twice (or more). So to implement that change the variable:

' Make this True if you want to completely delete
' any lines that appear more than once
' removeBothDuplicates = True
removeBothDuplicates = False

Sub SortIt()

Sub DuplicatesRemove()

Sub SortAndRemoveDups()

[bookmark: _Toc55977247][bookmark: _Toc164353053]Sort case-sensitively
(Video: youtu.be/Yx97w8XJ6iE)

If you have a list that you want sorting so that all the uppercase words (e.g. proper nouns) are sorted out separately, you can use this macro.

Sub SortCaseSense()

[bookmark: _Toc55977248][bookmark: _Toc164353054]Sort blocks of text
(Video: youtu.be/Yx97w8XJ6iE)

This is for sorting blocks of text such as names and addresses or block of data on multiple lines, where a block is defined by a blank line:

Jones, DE
Age: 42
Height: 5'6"

Brown, PQ
Age: 92
Height: 7'6"
Comment: Crikey she’s tall!

Green ZX
No data available

Adams
etc
etc

The macro will sort this into:

Adams
etc
etc

Brown, PQ
Age: 92
Height: 7'6"
Comment: Crikey she’s tall!

Green ZX
No data available

Jones, DE
Age: 42
Height: 5'6"

If a number of blocks of text are selected, it sorts just those, but if not it sorts the whole file.

Sub SortTextBlocks()

[bookmark: _Toc55977249][bookmark: _Toc164353055]Sort, ignoring first ‘word’
(Video: youtu.be/Yx97w8XJ6iE)

(The first of these two macros is probably superseded by the second, but you never know; it might be useful.)

The idea here is that you’ve got a Vancouver list of references and want to sort it, ignoring the number that comes at the beginning of the line, i.e. sort of the first author’s name:

1 Smith HG Blah blah blah
2 Anybody PQ Jabber Jabber Jabber
3 Whatsun TT Nother book
4 Jones KJ Whatever Next?

then gets sorted into:

2 Anybody PQ Jabber Jabber Jabber
4 Jones KJ Whatever Next?
1 Smith HG Blah blah blah
3 Whatsun TT Nother book

The macro sorts on the first so-many characters (set in the macro as 20). And in case the number is separated by a tab, not a space, you can use the second myDelimiter line at the head of the macro.

Sub SortNumberedList()

A more general form of the macro is presented next. Here, you select the list to be sorted, run the macro and, if you want the list sorted on the text after the first tab character, just press Enter. Otherwise, for the same effect as the previous macro, type a space in the input box and then press Enter. Or to sort after some other character, just type that character instead, e.g.

Beverley, Paul – macro writer	word following a tab
Brown, Andrew – typesetter	text following a tab
Johnson, Arthur – author	this follows a tab
Williamson, James – proofreader	and this follows a tab

using a comma gives:

Brown, Andrew – typesetter	text following a tab
Johnson, Arthur – author	this follows a tab
Williamson, James – proofreader	and this follows a tab
Beverley, Paul – macro writer	word following a tab

or a dash (type into the input box ^=, the F&R code for an en dash) gives:

Johnson, Arthur – author	this follows a tab
Beverley, Paul – macro writer	word following a tab
Williamson, James – proofreader	and this follows a tab
Brown, Andrew – typesetter	text following a tab

and going back to just running the macro and pressing Enter, to sort on the tab, gives:

Williamson, James – proofreader	and this follows a tab
Brown, Andrew – typesetter	text following a tab
Johnson, Arthur – author	this follows a tab
Beverley, Paul – macro writer	word following a tab

And by using ^+, you can sort of what follows an em dash.

Or how about these ideas on this list:

Williamson, James (2017) “Sandwiches for lunch”. (Wiley)
Brown, Andrew (2016) “A trip to the moon”. (Hodder)
Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)
Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)

Sorted using ‘(’ gives:

Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)
Brown, Andrew (2016) “A trip to the moon”. (Hodder)
Williamson, James (2017) “Sandwiches for lunch”. (Wiley)
Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)

And sorted using ‘"’ gives:

Brown, Andrew (2016) “A trip to the moon”. (Hodder)
Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)
Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)
Williamson, James (2017) “Sandwiches for lunch”. (Wiley)

And sorted using ‘. (’ gives:

Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)
Brown, Andrew (2016) “A trip to the moon”. (Hodder)
Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)
Williamson, James (2017) “Sandwiches for lunch”. (Wiley)

Fun, isn’t it?! :-)

Sub SortOnTextAfterDelimiter()

[bookmark: _Toc55977250][bookmark: _Toc164353056]Sort list of names by surname
(Video: youtu.be/P-6VdmT2BbE)

Suppose you have a list of names that need to be put in order by surname. Suppose too that some of the names have postfixes, such as ‘OBE’ or ‘MSc’ or ‘, Jr.’, so that the surname isn’t the final word on the line. This would mean that, say, ‘Paul Beverley OBE’ would be sorted with the O’s not with the B’s.

No worries! This macro will allow you to include these postfixes in a list at the beginning:

myPostfixes = "| BSc| MSc| OBE|, Jr.|, Sr.|"

It then sorts the list on the surname. Note that for, say, ‘Paul Beverley, Jr.’ you have to include the comma in the ‘myPostfixes’ line.

Sub SurnameSorter()

[bookmark: _Toc55977251][bookmark: _Toc164353057]Sort reference list that has ‘ditto’ lines
(Video:https://youtu.be/f9sSbJ9XLZM)

The scenario here was of bibliography and references lists that were out of alphabetical order. Worse, the list used the convention of not repeating the author name but adding some sort of ditto marks – initially, three em dashes:

Adams, Sathy. Bsa Arulobeit im Sathy Orocn. Pinbit: Siuwsbit Cessdet, 1918.
———. “Bfi Litlagbn im Depahby.” Et Depahodenc otr Ebn Lhebeln. Taf Yihk: TYU Ghann, 1984.
This could easily be solved with FRedit (explanation follows):

^p^+^+^+|zczc
DoMacro|SortIt
zczc|^p^+^+^+

The first F&R pulls all the ‘ditto’ paragraphs up to become part of the paragraph to which they belong, leaving a special ‘marker text’ (zczc) so that it can be restored later. So those single paragraphs, along with all the others, can then be sorted, using the SortIt macro. Finally, the paragraphs are split up again, by using another F&R.

No problem!

But then I discovered that some of the other references had a different format:

Aristotle. Telicolsaot Abseln. Cetaido, TY: Rivah, 1998.
· The Giabeln. Ditrit: Colcennot otr Li., 1917.
So I extended it to:

^p^+^+^+|zczc
^p-^t|pqpq

DoMacro|SortIt

zczc|^p^+^+^+
pqpq|^p-^t

Sorted!

Well, yes, except that there were also some references such as:

“Bending Vibahn faha Cibevobar py Maoh im Dinetw bsaeh Nbobun.” Bsa Aliticenb, 26 Oghed, 2018.
which needed to be sorted in with the B’s!

So I had to write a macro after all, to do a fiddle to remove any open double quotes, do the sort, then restore the quotes.

But while I was at it, I decided to make the macro so that it would either work on the whole file or (because this list had three separate alphabetic sections) or work only on the selected text.

So the macro declares two acceptable line-starters:

myDitto1 = "-^t"
myDitto2 = "^+^+^+"

i.e. a line-starter can be either [a hyphen and a tab] OR [three em dashes].

Sub BibSortWithDittos()

[bookmark: _Toc55977252][bookmark: _Toc164353058]Sort group of citations
(Video: youtu.be/Yx97w8XJ6iE)

In the section below are two macros, SortListInText and CitationListSortByYear. They can sort citation lists such as “(Saheem, 2013; Darwish et al., 2007; Andrews and Bloggs, 2010)” either into alphabetic order by surname, or chronologically.

Either “(Andrews and Bloggs, 2010; Darwish et al., 2007; Saheem, 2013)”

or “(Darwish et al., 2007; Andrews and Bloggs, 2010; Saheem, 2013)”.

Here are the two macros...
[bookmark: _Toc55977253][bookmark: _Toc164353059]Alphabetic sort in-line lists within a paragraph
(Video: youtu.be/Yx97w8XJ6iE)

The first macro, SortListInText, can sort lists in a number of formats within a paragraph:

	1) (Saheem, 2013; Darwish et al., 2007; Andrews and Bloggs, 2010)
	2) (Saheem 2013, Darwish et al. 2007, Andrews and Bloggs 2010)
	3) The winners are Simons T, Andrews P and Peters V.
	4) The winners are Simons T, Andrews P & Peters V.
	5) The winners are Simons T, Andrews P, and Peters V.
	6) The winners are Simons T, Andrews P, & Peters V.

It sorts lists with or without conjunction and with or without serial comma, and using ‘and’ or ‘&’ as the conjunction.

It checks if there are semicolons and, if so, takes those as defining the items that make up the list. If there are no semicolons, it uses the commas instead.

Also, to make the macro easier/quicker to use, when sorting items (1) or (2), all you have to do is click the cursor somewhere (anywhere) between the parentheses; the macro automatically finds the extent of the list.

And if you had, say “Andrews and Bloggs, 2007; Saheem, 2013; Darwish et al., 2010”, so that only the final two had to be reversed (either because of the surname, or because of the date), you could select an area of text from somewhere (anywhere) in ‘Saheem’ to somewhere (anywhere) in ‘2010’, e.g. the bit I’ve highlighted.

But one issue with this macro is the possible ambiguity in item (3)? [and (4), actually]

	3) The winners are Simons T, Andrews P and Peters V.

How does the macro know if this is a list of two persons or three? Answer: it doesn’t!

And I couldn’t make it automatically split the list at ‘and’ because...

	2) (Saheem 2013, Darwish et al. 2007, Andrews and Bloggs 2010)

would then be treated as four items!

So the macro will ask you, with item (2) [and similarly with (3) and (4)]:

	[Andrews and Bloggs 2010] – Is this a single item?

and you click ‘Yes’ (or just press Enter).

So in cases (3) and (4), you would instead click ‘No’ because it’s two items either side of the conjunction, not a single item.

But if you’re only using the macro for citations, and this feature annoys you, look at the start of the macro and find:

	allowSplitAtConjunction = True

and change it to False.

Sub SortListInText()

and I suspect this does the exact same thing…
Sub CitationListSortByName()

[bookmark: _Toc55977254][bookmark: _Toc164353060]Sort in-line citations by year
(Video: youtu.be/Yx97w8XJ6iE)

It may be that your client wants groups of citations sorting by date, not by surname, so that

	1) (Saheem, 2013; Darwish et al., 2007; Andrews and Bloggs, 2010)

needs to be sorted to:

	1) (Darwish et al., 2007; Andrews and Bloggs, 2010; Saheem, 2013)

So CitationListSortByYear, does that. Again, you can just click somewhere (anywhere) within the parentheses.

Similarly, if you had:

	2) (Saheem 2013, Darwish et al. 2007, Andrews and Bloggs 2010)

it would be sorted to

	2) (Darwish et al. 2007, Andrews and Bloggs 2010, Saheem 2013)

Now with reverse order:

To change the chronological order, change the first line to:

sortReversed = False

to get:

	2) (Saheem 2013, Andrews and Bloggs 2010, Darwish et al. 2007)

Sub CitationListSortByYear()

[bookmark: _Toc55977255][bookmark: _Toc164353061]Add item to existing list
(Video: youtu.be/8-nmzpAY5VA)

(Ha! This is basically a duplicate macro to AddWordToStyleList that I wrote a few years ago! But it’s probably better – more flexible.)

STOP PRESS: CopyToListAlphabetic works in a similar way, but it looks through the target file, and places the word/phrase into the correct alphabetic position in the list.

If you’re trying to create a list of something-or-other, then this macro copies the currently selected text across into a different file. The obvious applications for an editor are adding words to a word list, or adding notes to a style sheet.

If you’re collecting items from one list to put into another list, just click on the item – if no text is selected, the macro assumes you mean copy the current paragraph (i.e. list item).

(However, if you’d rather it assumed you want to copy the current word rather than paragraph then change the line: copyWholePara = True to False.)

You can have several files open at the time because the macro looks for a file that contains the text ‘list’ (or ‘List’) somewhere in its filename (and you can, of course, create two copies of this macro, one for ‘list’ and one for, say ‘sheet’ if you’re adding things to a word list and to a stylesheet).

You can change the keyword, using, say:

keyWord = "style"

And also if, like me, you have other “list”s that might be open, you can tell it not to use those. So I often have open a FReditList and/or a zzSwitchList, so I add:

wordsToAvoid = "FRedit,switch"

Hopefully, you can adjust to suit your way of working.

For some applications, you might want a blank line after the text in the list file; so, at the beginning of the macro, you can use:

addBlankLine = True

Another option is:

includeFormatting = True

So you can either bring across into the list just the text, or you can bring the text with any formatting – e.g. bold or italic – that is in the text you’re copying.

One user wanted the word(s) to be added, not at the cursor, but always at the end of the list file. If so, use:

alwaysCopyAtEnd = True

If, after adding the word/phrase/paragraph, you want to stay in the list, there’s the option:

goBackToSource = True

which can be changed to False.

If, after adding the word/phrase/paragraph, you want to highlight the item in the original (to remind you which things you’ve copied, and which not), then swap the apostrophe from:

myHighlightColour = wdColorBlack
' To add highlight, use:
' myHighlightColour = wdYellow

to:

' myHighlightColour = wdColorBlack
' To add highlight, use:
myHighlightColour = wdYellow

i.e. you are making the highlight colour Yellow, not Black.

Sub CopyToList()

Sub CopyToListAlphabetic()

[bookmark: _Toc55977256][bookmark: _Toc164353062]Table stripper
If you have a file that contains tables, and you need to take them all out into a separate file, leaving behind a callout of the form ‘[Table 4.3 near here]’ (or whatever), this macro will do it for you. The format of the callout is set in the first line of the macro.

Note: It would be worth running this macro after tidying up the file a bit because a rogue space can sometimes cause it not to find a table.

It should find the tables regardless of whether the caption is above or below the table.

Sub TableStripper()

[bookmark: _Toc55977257][bookmark: _Toc164353063]Tables to tab-separated text
This macro changes the contents of all the tables into tab-separated text, so:

	one
	two
	three

	four
	five
	six

becomes

one	two	three
four	five	six

Sub TablesToTabText()

[bookmark: _Toc55977258][bookmark: _Toc164353064]Callout inserter
The aim of this macro is to find the first reference to each figure (or table) and add, at the beginning of that paragraph, a suitable callout. However, the macro checks for three different versions of each reference (e.g. either ‘Fig. 23’ or ‘Figure 23’ or ‘Figures 23’) as set in the first three lines of the macro. The format of the callout text is set in the line: Callout = "<Figure XXXX here>", where XXXX is the figure number.

If a given figure number is not cited, the macro stops and alerts you so that you can make a note, and then let it continue. Of course, when it gets beyond the range of the figure numbers, you just click on ‘No’ when asked: ‘Continue?’

If the text says, say, ‘Figures 4.3 and 4.4 show...’ then it won’t be able to find the 4.4, so it will tell you that it can’t find 4.4, so make a pencil note and then, when it’s finished, go back and add it in manually.

If the figure/table numbering has a chapter prefix (e.g. ‘Fig. 4.23’) then answer ‘Yes’ to the ‘Existing chapter numbers?’ question. However, if there are not any existing chapter numbers, and you want to add them, answer ‘Yes’ to ‘Add chapter numbers?’

If it annoys you to have to answer three questions every time you want to use the macro (it does me!) then use the alternative lines in turquoise, and use vbYes or vbNo as appropriate.

A basically similar macro follows for use with table callouts.

Sub FigCallouts()

Sub TableCallouts()

[bookmark: _Toc55977259][bookmark: _Toc164353065]Move all figures out into a separate file
If you have a file that contains figures, and you need to take them all out into a separate file, leaving behind a callout of the form ‘[Figure 4.3 here]’ (or whatever), this macro will do it for you. The format of the callout is set in the first line.

N.B. It assumes that the caption, ‘Figure 2.5 Diagram of an elephant’, or whatever, is below the actual figure. If you need it to be the other way round, I’ll have to do a special version. If it would be of help to you, do please ask.

It would be worth running this macro after tidying up the file a bit. For example, if the caption has a space before the word ‘Fig(ure)’, it won’t find that figure.

The macro may miss the odd figure – I can’t guarantee 100% success, but if it gets to be a problem, send me a sample file and I’ll try to solve it.

(If your figures are captioned with ‘FIGURE 3.1 etc...’ then you need to change the line myFig = "Fig" into myFig = "FIG".)

It occurred to me that you might want to have the captions either kept with the main text or placed with the figures (or both), so this can be set at the beginning of the macro. If you use:

captionWithText = False
captionWithFigs = True

then the caption will only be in the Figs file and not in the main text.

Sub FigStrip()

[bookmark: _Toc55977260][bookmark: _Toc164353066]Edit the contents of table cells
(Video: youtu.be/P-6VdmT2BbE)

This macro started with the need to change all lone hyphens in table cells into em dashes, and then it extended into editing negative numbers in cells that used hyphens (e.g. -6.3) into proper Unicode minus signs (−6.3).

It can also strip off trailing full points and/or carriage returns and/or tabs (which can cause some real fun problems!)

I’ve added an optional highlight to show where changes have been made (but not where trailing characters have been stripped off.

If no text is selected, the macro works on all the tables in the document. If part (or all) of one table is selected, it works on just the selected bit. If several tables are selected, it works on just those tables.

You can customise the macro to some extent:

stripEnds = True
stripThese = "^p^t., "

This can be changed to False, if you don’t want to strip off training characters, and you can add or subtract characters from the list.

addEmDash = True

If you don’t want to add an em dash to all the empty cells, make this False.

doHighlight = True
myColour = wdGray25

I’m sure you can work out what these two do.

Sub TableEdit()

[bookmark: _Toc55977261][bookmark: _Toc164353067]Add em dash to every table cell
In my experience, very few authors know that you’re supposed to use an em dash if you’re indicating empty cells in a table. Most use hyphens or, at best, en dashes. This macro goes through the whole of the text and changes cells with en dashes or hyphens into em dashes.

As an option, you can either allow empty cells to remain empty, or to put an em dash in them too:

dashIfEmpty = True

Sub TableEmDasher()

[bookmark: _Toc55977262][bookmark: _Toc164353068]Add final character (full point) to every table cell
Someone asked if it was possible to add a full point to the end of every cell of a table. To be more specific, they wanted to add full points to a selected area of a table – say, a pair of columns, but not the other columns.

The following macro adds full points to just the selected area of the table. If there’s already a full point there, it does not add a second one.

If you want to add a different character to every cell, you can change the following line accordingly:

myChar = "."

Note: Because of the strange way that Word handles the cells in a table, I’ve had to use a little trick. The first thing the macro does is to add the ‘shadow’ attribute to the selected cells (you could use a different attribute if you use shadow for something else). It then looks through the table cells, ignoring the non-shadowed cells, but adding full points to the shadowed cells. It then removes the shadowing from the whole table.

Sub CellsAddChar()

[bookmark: _Toc55977263][bookmark: _Toc164353069]Add initial capital to every table cell selected
This macro ensures that every cell in the selected range has an initial capital letter.

Sub TableCellsInitialCaps()

[bookmark: _Toc55977264][bookmark: _Toc164353070]Remove/restore borders and rules of table
This removes all the border lines and vertical and horizontal rule of the selected table – and then adds them back if you run the macro a second time.

Sub TableBordersToggle()

[bookmark: _Toc55977265][bookmark: _Toc164353071]Textbox and frame removal
Authors may use Word frames or textboxes for tables, figures and their captions, or other pieces of text that can ‘float’. These features of Word present traps for the unwary editor: they are invisible in Normal (Draft) view; they are not affected by global search/replace operations; and they will probably not be correctly imported into typesetting software. The following macro will convert their contents into normal text, tagged <TBX> for a textbox or <FRM> for a frame. If you know or suspect that a document contains frames or textboxes, you should run this macro during the clean-up process. It can save you hours of copying and pasting.

Sub TextBoxFrameCut()

[bookmark: _Toc55977266][bookmark: _Toc164353072]List all styles used in a document
This macro generates an alphabetic list of all the styles that are used in the document, each with an indication of the page on which that style first occurs, plus the first few (six max) words of that paragraph:

	Biblio Title
	p.332
	"Bibliography"

	Footnote Text
	p.123
	"Brown 1990, "How the Word files"

	Heading 1
	p.12
	"Introduction"

	Heading 2
	p.1
	"Contents"

	Heading 3
	p.11
	"Other notes:"

	Table Grid
	p.48
	"C19 innovations"

The set-up options in the first few lines of the macro are:

' myStyles = "Normal,Default,"
myStyles = ""

Use the first line to list any styles that you don’t want listed.

displayParaWords = True
numWords = 6

If the first is set to False, you don’t get the third column, of the first words of the paragraph.
If it’s True then the second line sets the max number of words to be displayed.

deleteTableBorders = True

The final option, if True, will remove the all the lines you can see in the sample illustrated above.

[bookmark: _Toc164353073]Apply styles to textboxes
This applies a style to all of the textboxes in a document.

The line myStoryRange.Style = "List Bullet" can of course be replaced by specifying any other style name, or indeed any other action(s) that you would normally apply to selected text, such as other formatting, or even find and replace etc.

Sub SetTextBoxStyle()

[bookmark: _Toc55977267][bookmark: _Toc164353074]Copy text out of text boxes [textboxes] into main body of text
This copies the text out of text boxes and pastes it into the body of the text, hopefully in approximately the right place.

You have the option of inserting the text before or after the anchor paragraph:

placeTextAfterParagraph = True

Change the first line between True and False.

If you need to code/tag the text, it will add a code before and after the extracted text:

beforeText = "<Box>"
afterText = "</Box>"

(and obviously you can change the text used here) but if you don’t want the added tags, change it to:

beforeText = ""
afterText = ""

There’s also an option to highlight all the copied text in your chosen colour:

addHighlight = True
myColour = wdYellow

Sub BoxTextIntoBody()

[bookmark: _Toc55977268][bookmark: _Toc164353075][bookmark: _Hlk102747685][bookmark: _Hlk98920136]Footnote (endnote) fiddling
This macro does corrects three ‘funnies’ that an author might put in footnotes or endnotes:

– it removes a space if there is one in front of any note number
– it deletes a trailing space (or two)
– it adds a full point to the end of every foot/endnote that doesn’t already have one (or a !).

Sub FootnoteEndnoteFiddle()

[bookmark: _Toc55981623][bookmark: _Toc55981721]Endnote (Footnote) Fiddling – 2
(This is similar to the previous macro, but checks different things. If either isn’t quite what you want to do, please ask and I’ll update one or other for you, time permitting.)

People do some funny things in their formatting of endnotes (and footnotes), and this macro was written because one editor had a file (well, a set of files) where someone had added a blank line between each endnote and the next. You should, in theory, be able to remove them by find and replace, but it doesn’t always work properly, so I wrote this macro. But there’s probably an easier way ...

Sub NoteDeleteDblSpace()

[bookmark: _Toc55981624][bookmark: _Toc55981722]Footnote (Endnote) Fiddling – 3
This time the author had made all the footnote numbers italic. You can unitalicise (romanise) the callout numbers in the text with FRedit using:

^f|^&

but that doesn’t affect the actual numbers of the actual footnotes themselves. We therefore need to use a separate footnote-fiddling macro:

Sub FootnoteNumberNotItalic()

And if you want these numbers not superscripted, the last line would be:

rng.Font.Superscript = False

and (being really silly), you could have:

rng.Font.Bold = True
rng.Font.Size = 18
rng.Font.Name = "Arial"

[bookmark: _Toc55981625][bookmark: _Toc55981723]Footnote (Endnote) Fiddling – 4
Someone wanted to change the endnote numbers in the endnotes to superscript. This seems to do the trick.

Sub EndNoteFiddleSuperscript()

[bookmark: _Toc55981626][bookmark: _Toc55981724][bookmark: _Toc55977269]Footnote (Endnote) Fiddling – 5
Someone else wanted to remove any extra space the author had placed at the beginning of their footnotes. This seems to do the trick.

Sub FootnoteFiddleStartSpace()
[bookmark: _Toc164353076]Delete all endnotes
You can delete all the endnotes in a document at once:

Sub DeleteAllEndnotes()

[bookmark: _Toc55977270][bookmark: _Toc164353077]Delete all footnotes
You can delete all the footnotes in a document at once:

Sub DeleteAllFootnotes()

[bookmark: _Toc55977271][bookmark: _Toc164353078]Unembed footnotes or endnotes
The aim of this macro is to extract all the footnotes or endnotes, put them at the end of the file, and replace all the footnote numbers with ordinary superscripted numbers (but highlighted in turquoise). When I first wrote this macro, I said, ‘This is clearly not something you want to do if there’s any chance that someone is going to want to add or remove footnotes, because Word’s automatic renumbering is, of course, lost once this macro has been run.’ However, someone had files in which the notes had been unembedded, and asked if I would write a macro to reverse the process – see ‘Re-embed Notes’ below!

[Later: This then means that if you have a file that has problems with the notes, you can unembed them, fiddle with them (maybe automatically – see below) and then re-embed them.]

Sub NotesUnembed()

[bookmark: _Toc55977272][bookmark: _Toc164353079]Re-embed notes
If your notes are in the form of numbered paragraphs at the end of the document, place the cursor on the first line of the first note and run this macro, and it will insert them all as proper footnotes. These are now live and so you can add and delete notes, and Word will now automatically renumber them.

N.B. It might not work too well if the notes are ‘untidy’, e.g. ensure that there aren’t unnecessary spaces and multiple newlines (^p) in the notes. And it also can’t deal with notes of more than one paragraph, sorry. Maybe go to the notes and do a selective F&R of ^p into pqpq, run the macro and then change pqpq’s back into ^p’s.

Sub NotesEmbed()

[bookmark: _Toc55977273][bookmark: _Toc164353080]Unembed endnotes by sections
This does the same sort of thing as NotesUnembed, but it is for the case where the notes are at the ends of each chapter, and the chapters are set up using Word’s ‘sections’ feature. It can take quite a while to run with a big file, and even once it has run and beeped to show that it has finished, Word can then still take quite a while to ‘release’ the file. As far as I can tell, it’s reformatting the file, and won’t give you control back until it has finished.

Sub NotesUnembedBySections()

[bookmark: _Toc55977274][bookmark: _Toc164353081]Renumber all superscripts
...and...
[bookmark: _Toc55977275][bookmark: _Toc164353082]Renumber all note numbers
(These following two macros go together really, hence the weird double title!)

(N.B. The latest version renumbers either just the selected area of text or, if nothing is selected, it will ask if you want to renumber the whole of the text.)

The next macro goes right through a file looking for all superscripted numbers (which we are assuming are footnote/endnote markers) and replacing them with a consecutive series of numbers starting from 1.

Obviously, if your text has m2, m/s2 etc (i.e. other reasons for superscripting), then you’ve had it! You can’t use this macro to renumber the footnotes. Well, you could use FRedit to change all those other superscripted numbers to something non-superscripted, run this macro, and then put them all back again into superscript.

Then following that is a ‘Renumber all the notes’ macro, the idea being that you have a set of notes, but the numbering is no longer consecutive, for some reason.

To use it, you just put the cursor somewhere on the first line of the notes (or, indeed, any list of numbered items), and it goes through and renumbers them all consecutively.

Sub RenumberSuperscript()

Sub RenumberNotes()

[bookmark: _Toc55977276][bookmark: _Toc164353083]Sorting out messed-up footnote numbering
(This uses the previous four macros – it’s just the recipe.)

So, you’ve got a file whose note numbers have got all messed up and are no longer consecutive. The idea of this rescue package is to change Word’s automatic notes into ordinary editable text; then sort out the numbering, then re-embed the notes into the text so that, once again, they are using Word’s note facility, and you could switch back from endnotes to footnotes and change to roman numerals, add and remove notes etc.

This recipe assumes that the notes have Arabic numbering, not roman numerals. What’s more, it assumes that they are endnotes, not footnotes, so before you start, use Insert–Reference–Footnote… to change to endnotes with Arabic numerals.

So, the total process is:
[bookmark: _Hlk57387453]0) Change footnotes to endnotes and roman numerals to Arabic numerals.
1) Run NotesUnembed which changes the automatic notes into just ordinary superscripted numbers with notes as a bunch of (formatted) text at the end of the file.
2) Run RenumberSuperscript to give the citations a set of consecutive numbers.
3) Move down to start of notes and run RenumberNotes to make them consecutive too.
4) Check that all is well, i.e. that you’ve got the same number of citations as notes!
5) Place the cursor on the first line of the first note and run NotesEmbed.

[bookmark: _Toc164353084][bookmark: _Hlk56945593][bookmark: _Toc55977278]Endnotes/footnotes to inline bracketed text
This macro copies the text (with its formatting) from end/footnotes and places the text in square brackets following the related note citation.

Sub NotesCopyToInline()

[bookmark: _Toc164353085]Convert individual footnote to endnote or vice versa
This macro converts the current note from end to foot or vice versa. However, if the cursor is in the main text, it hunts for the first available note marker (foot or end) and converts that.

Sub NoteFootEndSwitch()

[bookmark: _Toc164353086]Bracketed notes to embedded footnotes
This macro first deletes any existing embedded notes, then inserts any text that appears in square brackets in new footnotes, with citations next to the source note (then deletes the text in square brackets).

The previous macro was a request from an editor in India, but when I’d done it, I thought I might as well reverse the process, as it’s only a few lines of code, but then I realised that this pair might be useful as a way of sorting out messed up footnote numbering. Worth a shot, anyway!

Sub NotesInlineToEmbed()

[bookmark: _Toc164353087][bookmark: _Toc55977277]Add a footnote (endnote) but in a different style
I prefer to use a keystroke to do most things, so I wanted a macro to add a footnote, to which I could attach a keystroke. However, someone asked me if it was possible to add a footnote, but using a different style. Answer: yes.

These two macros add a footnote or endnote, but with your specified style name.

Then someone asked if it was possible to add footnotes with [] around the number, as shown here.[3] Answer: yes.

addSquares = True
changeStyle = False

These two lines at the beginning of the macros specify whether or not each feature is used, i.e. as above, the foot/endnotes will be add with squares round the citation number, but with the default foot/endnote style.

Sub FootnoteAdd()

Sub EndnoteAdd()

[bookmark: _Toc164353088]Renumber any list
This macro renumbers any list within a file, starting from the number of the item at the cursor, i.e. you could start part way through a list). This contrasts with RenumberNotes (above), which assumes you are numbering from item 1, and that the list extends right to the end of the file.

So to give the macro chance to know when it has reached the end of the list, it asks for the maximum number of unnumbered paragraphs that can occur between the numbered paragraphs.

Sub ListRenumber()

[bookmark: _Toc55977279][bookmark: _Toc164353089]Remove numbering from all headings
Santhosh Matthew Paul writes: “I needed to remove numbering from numbered headings in Word 2010 documents. The headings are styled Heading 1, Heading 2, etc., and the numbering is automatic. I couldn’t see a way to accomplish this by adjusting a setting in Word, say, by modifying the heading styles. I was only able to change one heading at a time.

“So, I tried the macro approach. I recorded myself removing the numbering from one heading, and learned that the key command is: Selection.Range.ListFormat.RemoveNumbers”

Santhosh then wrote a macro; it sort of worked, but had a couple of issues. He shared it with me, and I was able to smooth out some of the problems. It’s now available for other people to use.

Sub RemoveNumbersFromHeadings()

[bookmark: _Toc55977280][bookmark: _Toc164353090]Delete all bookmarks
Delete all bookmarks in a Word document at once:

Sub DeleteAllBookmarks()

[bookmark: _Toc55977281][bookmark: _Toc164353091]Delete all comments
You can delete all the comments in a document at once:

Sub DeleteComments()

In Word 2002 or later, you can reduce it to a single-line macro:

Sub DeleteComments2()
' Version 18.06.10
' Delete all comments
ActiveDocument.DeleteAllComments
End Sub

And in fact, you don’t even need a macro. Simply assign a keystroke to the Word command DeleteAllCommentsInDoc. (Tools –> Customize; click Keyboard; select AllCommands in LH window; select DeleteAllCommentsInDoc in RH window, pick a keystroke and click Assign.)
On the other hand, you might like to use a macro because you can give yourself feedback:

Sub DeleteComments3()
' Version 18.06.10
' Delete all comments
numberCmnts = ActiveDocument.Comments.Count
ActiveDocument.DeleteAllComments
MsgBox("Comments deleted: " & str(numberCmnts))
End Sub

[bookmark: _Toc164353092]Delete all comments by a specific author/editor
If you have a document with comments by different people, maybe an author and an editor, you might want to delete the comments of one, but keep the others.

Sub DeleteCommentsSelectively()

[bookmark: _Toc55977282][bookmark: _Toc164353093]Transfer comments from square brackets to bubbles
(Video: youtu.be/2PG7n5MCMCo)

Within the text, the client had placed a load of comments within square brackets. The task was to copy each comment and insert a comment bubble at that point, and finally place the text of the comment in the bubble.

Sub CommentBracketsToBubbles()

[bookmark: _Toc55977283][bookmark: _Toc164353094]Transfer comments from square bubbles to brackets
(Video: youtu.be/2PG7n5MCMCo)

Having done that, why not write a macro to reverse the process?!

Sub CommentBubblesToBrackets()

[bookmark: _Toc55977284][bookmark: _Toc164353095]Add (and remove) serial numbers to (from) initials in all comments
The idea here is that within the comments, you insert something like “AQ:” as an indicator that this is a comment or query for the author (or “TS:” for the typesetter).

This macro then goes through all the comments and adds serial numbers to any comment containing an “AQ:” tag.

However, if some of the “AQ:”s already have serial numbers, it assumes, rather, that you want to remove the serial numbers from all the tags. They will all be restored to just “AQ:”, without numbers, so you can then run the macro a second time, and it will serialise them again.

Sub CommentsAddIndexOnInitials()

[bookmark: _Toc55977285][bookmark: _Toc164353096]Delete all comments that don’t have tags
The editor then wanted to delete all of the comments (presumably their own temporary comments) that did NOT contain these AQ tags (numbered or not), leaving just the comments for the author.

Sub CommentsDeleteAllNotTagged()

[bookmark: _Toc55977286][bookmark: _Toc164353097]Delete all comments that DO have a specific tag
(Video: https://youtu.be/gOBpOMbIogU)

The reverse of the above. You can put any tag you like into comments then run this macro and it will delete all those comments. But obviously you have to choose you tag wisely because comments that are deleted stay deleted! The tag is set in the firat line of the macro:

myDeletionMarker = "***"

Sub CommentsDeleteSelectively()

[bookmark: _Toc55977287][bookmark: _Toc164353098]Delete all hyperlinks
You can delete all the hyperlinks in a document at once.

Health warning: If your text has equations don’t use this macro; instead use FieldsUnlink, below.

Sub DeleteAllLinks()

[bookmark: _Toc55977288][bookmark: _Toc164353099][bookmark: _Toc55977289]Unlink all fields except equations
This macro unlinks all fields except equations.

Sub FieldsUnlink()

[bookmark: _Toc164353100]Fields codes visible (or hidden)
If you need to, say, edit the URL code behind a link, you can assign a keystroke to the Word command ViewFieldsCodes – no need for a macro. You just go to All Commands in the Customize Keyboard window, and find ViewFieldsCodes and assign a keystroke. But...

If you have a large file with lots of links (like this one!!), you may find that, when you make the codes visible, because there’s now more visible text, the cursor position will have have disappeared way off the screen. OK, if you move the cursor left or right, the screen will jump back to the right place, and you can see your cursor again. However, when you switch them off again, you’ll have to the same again!!

So you can use this macro, which will switch the codes on or off, and you’ll still be able to see the current cursor position – at the bottom of the screen – so you can immediately make your edits.

Sub FieldCodesVisible()

[bookmark: _Toc164353101]Delete selected hyperlinks
This macro, as written, looks through all the hyperlinks in the text and, if they are URLs, i.e. contain ‘www’ or ‘http’ it does not delete them, but deletes all the rest. This was needed by a client who wanted the hyperlinks to authors’ names to be deleted, but the URL links to be preserved.

If you have a different selective hyperlink deletion criterion, I’m sure we could edit this macro accordingly.

Someone suggested it would be good to see where links had been removed. If you take the apostrophe out of the line

' myColour = wdGray25

then the text of the deleted links will be highlighted in light grey (or change the colour to wdYellow, or whatever you fancy).

Sub DeleteSomeLinks()

[bookmark: _Toc55977290][bookmark: _Toc164353102]Check each of the URLs
The aim of this macro (I think!) is to check whether each of the URLs in the text appears in the references list. It then highlights them red or green accordingly. If this is something you might want to do, please send me a sample file, as the macro will probably need adjusting.

Sub ReferenceCheckWeb()

[bookmark: _Toc55977291][bookmark: _Toc164353103]Citation and bibliography (references list) field conversion
If you have citations automatically linked to a bibliography (references list), and want to turn both into unlinked, editable text, this macro does the trick. It also has the option (’cos the guy who asked for it wanted it) to turn the citation into italic. If you don’t, then change the first line to:
makeCitationItalic = False.
	
Sub UnlinkCitationsAndRefs()

[bookmark: _Toc55977292][bookmark: _Toc164353104]Mendeley citations and punctuation correction
If authors have used the Mendeley reference system, but has placed the citation inside the punctuation, then this macro corrects it.
	
Sub MendeleyPunctuationCorrection()

[bookmark: _Toc55977293][bookmark: _Toc164353105]Delete all figures from a file
This macro looks through all the inline images, and looks for a caption that might indicate that it’s a figure with a caption. If so, it deletes the image.

Sub DeleteAllFigures()

[bookmark: _Toc55977294][bookmark: _Toc164353106]Delete all inline images from a file
This macro looks deletes all the inline images from a file, regardless of what they might be (so don’t say I didn’t warn you!).

Sub DeleteAllInlineImages()

[bookmark: _Toc55977295][bookmark: _Toc164353107]Delete all inline images from a file and close the space
This macro looks deletes all the inline images from a file, and closes up the space where they were.

Sub DeleteAllImagesAndCloseUp()

[bookmark: _Toc55977296][bookmark: _Toc164353108]Delete all inline images from a file and add a call-out
This macro looks deletes all the inline images (figures, hopefully) from a file, and replaces them with a message, such as “<Figure 19.3 about here>”.

You can either add the relevant chapter number at the beginning of macro each time, or get the macro to dig the chapter out of the filename, e.g. “19_Further Explanations”.

Sub DeleteAllImagesAddCallout()

[bookmark: _Toc55977297][bookmark: _Toc164353109]Delete all paragraphs that are mainly italic
This finds all paragraphs that are mainly in italic and deletes them. The line

deletionFactor = 6

sets the decision level for deletion, i.e. delete the paragraph if there are (6) times as many italic words as roman words.

Sub ItalicParaDelete()
[bookmark: _Toc55977298][bookmark: _Toc164353110]Convert combo boxes to text
To replace the combo boxes with the text that each is currently displaying you run a very simple macro, provided by Howard Silcock of New Zealand.

Sub ComboBoxAccept()

[bookmark: _Toc55977300][bookmark: _Toc164353111]Unbold every colon followed by roman text
This is where you’ve got headwords in bold, each followed by roman text, but you don’t want the colon to be bold. However, you can’t just use global F&R to unbold the colons because there might be colons, say, in bold headings, where the whole line, including the colon, must remain bold.

So this macro looks for bold colons that are followed by roman text.

Sub ColonUnbold()

[bookmark: _Toc55977301][bookmark: _Toc164353112]Auto-lists to text
This macro converts all Word automatically numbered and bulleted lists to proper numbers and bullets. It makes the file more suitable for sending to a typesetter: if you don’t do this, the bullets and numbers can sometimes get lost when the file is imported into the typesetting system.

Sub AutoListOffSimple()

If you want ‘proper’ bullets and not the ones in Symbol font that Word tries to make you use, there’s a more complex macro that uses F&Rs. It converts the bullets, sub-bullets and sub-sub-bullets to Unicode characters.

Technical details: The code &HF0B7 in the first F&R is for the Symbol bullets. (If you use the WhatChar macro, that will confirm that the hex is F0B7.) The second F&R is for the tick symbol in the Wingdings font. Again, I got the F0FC code by using WhatChar.

In both F&Rs, I replace with an ordinary bullet, but you could use a different symbol, e.g.

newCharacter = "*": ' asterisk

If you want to use the same macro (i.e. still use the same keystroke) but without changing the bullets, you can change the first line to changeBullets = False.

Sub AutoListOff()

[bookmark: _Toc55977302][bookmark: _Toc164353113]Full-out paragraph under all headings
This macro ensures that the first paragraph under each heading is full out by applying a style with no first-line indent.

It uses Word’s built-in styles Heading 1, Heading 2, Heading 3, Body Text and Body Text First Indent as examples so, if your document uses different styles, you will need to edit the style names accordingly.

First, make a list of all the names of the styles after which you don’t want an indent. This is in the line:

StyleList = "Heading 1, Heading 2, Heading 3, and any more you want"

Then specify the names of styles for with- and without-indent text:

NoIndentStyle = "Body Text"
IndentStyle = "Body Text First Indent"

Here’s the complete macro.

Sub FirstNotIndent()

[bookmark: _Toc55977303][bookmark: _Toc164353114]Selective format changing
Suppose you have a text where the author has not used styles, but simply applied effects (bold, italic, font size, alignment etc) on a piecemeal basis. Now, I prefer to edit in a left-justified style rather than fully justified, because it’s easier to see if there’s any odd spacing – each space is the same size. Now, if the author has centred some paragraphs and maybe right justified others, you probably want to keep those as they are and only change the fully justified paragraphs to be left justified. Here’s a macro to do it:

Sub JustifyOFF()

But: you don’t need to use a macro, do you?! You can just use the F&R dialogue box. Leave the Find and Replace boxes empty, and in the Find, set Format – Paragraph – General – Alignment – Justify, and then in the Replace, set Format – Paragraph – General – Alignment – Left. The ‘Replace All’ does the rest.

Still, I’ve left the macro in the book, just in case you can use it as a pattern for doing something else on a paragraph by paragraph basis. I can’t think why, but suppose you want to change all the paragraphs in 14pt bold justified into 12pt italic left aligned – you couldn’t do that with ordinary F&R! Here’s the macro version:

Sub FunnyChange()

[bookmark: _Toc55977304][bookmark: _Toc164353115]Raised/lowered text to super/subscript
If the author has used the font attribute ‘Raise by 3pt’, or whatever, to indicate superscript and ‘Lower by 3pt’ for subscript, this macro converts them to proper super/subscript, regardless of how much they have raised/lowered the text by. It also highlights any changes it makes, in your chosen colour, so that you can keep a track of what it has done.

Sub SuperSubConvert()

[bookmark: _Toc55977305][bookmark: _Toc164353116]Greek symbol font checker
(This may be redundant in the light of the next macro.)
(N.B. This works for other Symbol fonts too – not just Greek ones. And it also now checks for Wingding fonts, which it highlights in red.)

There’s a FRedit list for this in the FRedit library (search for ‘greek’), but there may be characters in your text that it doesn’t yet cover. The best thing to do is run the FRedit list, and then run this macro on a copy of your text (don’t say I didn’t warn you). It will point up any funny codes that it finds, and offer you the codes ready to extend the FRedit list. All you then have to do is find the proper Unicode number for the character and add that to the list.

The macro sets up the Find box so that you can look through for any hex codes that it has found for you, copy each one and add it to your FRedit list.

Sub SymbolFontCheck()

[bookmark: _Toc55977306][bookmark: _Toc164353117]Symbol font to unicode converter
MS Word’s Symbol font can be a pain in the proverbial, so the idea of this macro is to completely change every character that’s in Symbol font into the Unicode character equivalent.

The macro has two modes: Test, where it types the Unicode character equivalent alongside the original, and Normal where it simply replaces the character with the Unicode character. If you’re nervous that this macro might get some things wrong, run it first in Test mode on a copy of the text, and check that they are all OK.

This has by no means been an easy macro to write – the shortness of the resulting macro is deceptive! This is because there are myriad ways in which different versions of Word can ‘mash’ Symbol fonts. Now, there is one feature that I was nervous of (though I can’t remember what the feature was now!), and so any characters that have this feature are coloured in red. So just double-check that they have come out as intended.

At the beginning of the macro there is a conversion table, listing the character number of the old Symbol font, followed by the Unicode number to which it is converted. This list is not exhaustive – it’s just the ones I’ve come across in my work. So if the macro finds a Symbol font it doesn’t know, it beeps at you and highlights it in turquoise. If you then find the necessary codes (use the WhatChar macro to find the Symbol font number and search the web for the required Unicode number), you can add them to the list. But if you’re unhappy to mess with the macro, send me a sample of the different character – it’s only a couple of minutes’ work to find it.

Sub SymbolToUnicode()

[bookmark: _Toc55977307][bookmark: _Toc164353118]Highlight all ‘funny’ fonts
The idea of this macro is to bring to your attention any characters/words/paragraphs that are not in the main font(s) used in the file. So in the first few lines of the macro, you name all the fonts you don’t want highlighting.

N.B. This doesn’t seem to work 100%. It works on some fonts but not others. It seems that Word’s Find facility (which is what the macro uses) doesn’t respond to all font names. That said, because the macro is defining which areas of text not to highlight, it might highlight more than it should, but it won’t fail to bring to your attention things you’re interested in.

The macro allows you to specify up to five fonts you don’t want it to highlight.

Sub FontHighlight()

[bookmark: _Toc55977308][bookmark: _Toc164353119]Get rid of ‘rogue’ fonts
Suppose you have a file that’s in, say, Times New Roman (TNR), but there are various places where Arial have been used, or Garamond, or some such, and you want to restore them to the font used in the Normal style.

This macro reads the name of the font at the cursor (say Arial), reads what the Normal font is (say TNR) and changes any text in the whole document that’s in Arial into TNR.

Sub FontEliminate()

[bookmark: _Toc55977309][bookmark: _Toc164353120]Get rid of ‘locked’ fonts
This is an obscure problem, but if you’ve experienced it, you’ll know what I mean!

You notice that in a paragraph of, say, Times New Roman a character(s) is in the wrong font (I’ve had them in Calibri, Cambria, Sim Sun and MS Gothics) but when you select the text around the characters it refuses to change into TNR.

I have tried several ways to fix this, both manually and using macros, and always failed. However, one day I shut myself in a darkened room, and two hours later, after trying various really complicated ideas, I found a simple one that worked! Hurrah!

So here are two macros. The first searches from the cursor downwards, to find any paragraph that contains mixed fonts (though that might be for valid reasons). With the second macro, if you select some text either side of the rogue character(s), it should make all the characters the same font as the first character. Enjoy!

N.B. FunnyFontClear doesn’t work with track changes switched on, sorry!

Sub FunnyFontFind()

Sub FunnyFontClear()

[bookmark: _Toc55977310][bookmark: _Toc164353121]Funny font full facilities
These ‘funny’ fonts are ‘interesting’ to say the least, so I’ve created a group of macros to try to analyse and fix (if ’twere possible) these funnies.

First we want to know what fonts are being used in a given file, so the first macro finds all the different fonts used at paragraph, word or character level. Each time it finds a new, different font name, it stops and shows you what it’s found and where (this will become important later, trust me!).

It types out the list of font names it’s found at the head of the file,

Sub FontLister()

Now we want to strat digging around the file, looking at the use of these different fonts, some of which will be perfectly valid, of course. So the next macro uses Word’s ordinary Find facility to find “some text in such-and-such font”.

If you click in one of the font names at the head of the file and run the macro, it will search for that font name.

If you select a bit of text in a given font, it will search for that instead.

Sub FontFind()

Once you’ve got some selected text in one of the funny fonts, and you want to restore it to the base font – Times New Roman, or whatever – you can use this third macro.

After it (thinks it) has restored the text to a sensible font, you perhaps want to go through the text and find the next bit of text in the funny font, so as Find is set up, you can just use my FindFwd, or however you move to the next find.

However, if instead you just run this same macro a second time, it detects that you’ve already cleared this bit of text and so it thinks “Oh, I suppose you mean that I should just move to the next bit of funny font text.” So you click this macro once to correct the text and a second time to jump to the next bit of funny font text.

Sub FontFunniesClearThisOne()

(This macro sort of half duplicates the macro in the previous section, FunnyFontClear.)

But this is where the fun starts! In my experience (well, in the file I’m working on at the moment), FontLister gives me:

Arial
Calibri
Cambria Math
MS Gothic
NSimSun
SimSun
Times New Roman
Times-Roman

(Some interesting ‘fonts’, eh?!)

However, when I ask FontFind to find either Arial or Calibri, it denies all knowledge of them. But I know they are there; I saw them with my own eyes, when I ran FontLister!

If I now try to use Word’s Find window, it says it’s looking for “Font: (Default) Arial” and “Font: (Default) Calibri”, whereas for the others it says, e.g. “Font: Cambria Math”.
Go figure!

Anyway, one more macro in the set. If you have some characters in, say, MS Gothic, if you select one of them, then next macro goes through the whole file and reverts all MS Gothic characters to the default font.

Sub FontFunniesClearAll()

[bookmark: _Toc55977311][bookmark: _Toc164353122]Add thin (or other) space to units
If you want to have a thin space in between every number and its unit, e.g. 16 kg, then this macro finds all the numbers-with-a-unit (whether already spaced or not) and inserts your chosen kind of space – thin, non-breaking, ‘<spc>’ or whatever. It also recognises degree symbols (whether Unicode character or Symbol font) and removes their space.

The macro needs to know what is or is not a ‘unit’. For example, you don’t want it to use a thin space for “16 men on a dead man’s chest”. So I’ve used a set of criteria but then there are two sets of exceptions. It sounds complicated, but once you have it working, all you need to do is add or subtract items from the exceptions list to suit your own specialist texts.

The criteria are different for different lengths of the word that the macro thinks might be a unit. First, it will assume that all one- and two-letter ‘units’ need spacing. It will also space all three-letter ‘units’, unless the three letters form a word that the spelling checker recognises, e.g. ‘16 men’. No ‘units’ of four or more letters will be spaced unless you specifically list them at the start of the macro.

Here are the suggested exceptions lists as they appear in the macro:

' one- and two-letter words to ignore
ignoreThese = ",a,b,c,d,e,f,g,h,i,j,k,n,o,p,q,r,t,u,v,w,x,y,z," & _
 ",D,E,I,O,X,Y,Z" & _
 ",An,an,as,As,at,be,by,do,en,gh,ie,if,in,In,is,Is,nd," & _
 ",of,no,No,on,On,or,pp,rd,Re,so,So,st,th,to,To,UK,US,vs,we,"

' three-or-more letter words to include
includeThese = "kWh,MPa"

' three-or-more letter words to ignore
excludeThese = "exp,"

' Avoid things like "Fig. 2.3 A view..."
notAfterThese = "Fig,Figure,Table,Box,Section"

So the macro is in a perfectly usable state. If you run it, you might find it misses some units and/or makes some false positives. In which case, you can refine one or other of the exception lists in the macro.

(Aside: You might think that having ‘kWh’ and ‘MPa’ in the ‘include’ list is unnecessary, since they aren’t proper words. However, Word’s spellchecker recognises them as correctly spelt words, so they would be ignored if they weren’t included in the list.)

Other things set at the beginning of the macro are (1) the colour in which to highlight the spaces, so use wdNoHighlight if you don’t want the added spaces to be highlighted. (2) the type of space to be used: thin, non-breaking or textual.

I’ve also added the facility to ‘hide’ text such as reference lists by using the single strikethrough attribute (as I do on many of my macros). Also, I’ve added a facility where it checks the word immediately before the ‘unit’, and ignores it for certain words. This is to avoid things like, ‘Fig. 2.3 A view showing...’ being interpreted as meaning ‘2.3 amps’.

Sub UnitSpacer()

[bookmark: _Toc55977312][bookmark: _Toc164353123]Language selection
When changing language, it’s worth doing it using a macro, rather than just clicking on the language change icon.

Why? Well, it’s possible that the author has specifically set the language of some of the various elements of the document (main text, notes, comments etc.), and the language icon only sets the language of the element where the cursor is currently placed.

Over the years, I’ve discovered a number of spelling-related problems that people have experienced, and added their solutions into the macro(s).

Specifically, it sets the language of the text inside textboxes, in footnotes and endnotes and in comment boxes (which can be a problem in files originating in the Far East) and even in the Normal Style – yes, if someone has specifically set the language of the Normal style to, say, French, you can click the language change icon to UK English, but the style for the Normal style stays French (well, it does on my system, anyway: Word 2010).

This might be a belt and braces approach, but it takes no longer to run a macro than to click an icon, so you might as well be safe and sure.

Plus, as it’s a macro, if you’re using FRedit, you can add a line:

DoMacro|LanguageSetUK

so you don’t forget to change the language.

You can, of course, create a second copy of the macro that sets US English – or any other language.

German versions now added.

Sub LanguageSetUK()

Sub LanguageSetUS()

Sub SpracheDE()

Sub SpracheCH()

(The next four all do more or less the same! Oops!)
Sub LanguageToggle [29.10.21] – Toggles the language setting of (part selected) text
Sub LanguageSetMulti [07.06.23] – Toggles between different language country settings
Sub LanguageSwitch [16.08.23] – Switches the language between two or three alternates
Sub LanguageUSUKswitch [06.10.23] – Switches language between UK and US English

(The last one is for me, as I’m using the [cheap, non-subscription] Word 2021, and the status bar refuses to display the current language, so this macro displays the language name on the bar as a confirmation.)

[bookmark: _Toc55977313][bookmark: _Toc164353124]Highlight text not in main language
If you have a file that, you suspect, has bits of text where the language has been changed, you can obviously change the whole file to a given language using the macros above, but you might want to know exactly which bits of text have, for some reason, had their language changed. This macro highlights all words not in the language that prevails at the current cursor position.

For speed, it checks the text one paragraph at a time and if it finds a ‘mixed’ paragraph, it checks that paragraph a word at a time and highlights the ‘funny’ ones.

Sub LanguageHighlight()

[bookmark: _Toc55977314][bookmark: _Toc164353125]Mark long sentences
If I am asked to shorten over-long sentences, I find it helpful to be alerted to the fact that any given sentence might be on the long side – it’s one thing less to think about as I’m reading through the text. This macro therefore finds any sentences longer than a certain number of words and changes the font colour to one of two colours, so that they are drawn to my attention.

I decided to use two different colours in case two consecutive sentences are over long – it makes it obvious that it’s two long sentences, not one really, really long sentence.

The choice of colours and the critical number of words are set in the first three lines of the macro.

Sub LongSentenceCheck()
[bookmark: _Toc55977315][bookmark: _Toc164353126]Ensure all sentences have two spaces following
This macro ensures that every sentence has two spaces after it.

Sub DoubleSpaceAfterSentence()

[bookmark: _Toc55977316][bookmark: _Toc164353127]Highlight all questions
One editor wanted all questions to be drawn to their attention while reading through the text. This macro highlights in green (change it if you like) all sentences that end with a question mark.

Sub HighlightAllQuestions()

[bookmark: _Toc55977317][bookmark: _Toc164353128]Highlight all long quotations
(N.B. These two macros are effectively superseded by QuotationMarker above.)

I was asked if I could write a macro to look for over-long quotes and put them into displayed quote style. It’s a bit of a big ask if you think about all you do when you find a long quote. I decided as a starter to at least highlight all over-long quotes – ‘that should be easy’, I thought. Ha! I hadn’t reckoned on apostrophes.

The wordLimit = 50 will set it so that if a quote is 50 or more words, it will highlight it.

The first macro is easy. If your text uses double quotes, there’s no problem (the word limit for highlighting the quotes is set at the beginning of the macro):

Sub HighlightLongQuotesDouble()

However, if the text uses single quotes, you can find the beginning of each quote easily enough, but how do you distinguish between an apostrophe and a close single quote – difficult! Of course, haven’t and we’ve etc are easy to identify, and so is the apostrophe-s: the boy’s book, but it’s the s-apostrophe that is the real problem. If you have the poets’, is that something belonging to them, or is it the end of the quotation?

What I’ve done, therefore, is simply err on the side of assuming that, say, the poets’ blah blah is an apostrophe, and carry on searching for another close quote/apostrophe. So if, in fact it was a close quote, the result is to generate a ‘quotation’ which is actually two quotations plus the intervening text. Still, at least it highlights it, so it’s easy for you to check it out later. And to make it stand out better, I have unhighlighted any apostrophe/close quote mark that is highlighted in your chosen colour.

(It’s difficult to explain, but it’ll make sense when you see it in action ... I hope.)

Sub HighlightLongQuotesSingle()

[bookmark: _Toc55977318][bookmark: _Toc164353129]Displaying long quotes
If you’ve got lots of long quotes, it’s useful to be able to remove the quotation marks, make it into a displayed quote, and change the style of the quote, e.g. use a style with left and right margins, and maybe smaller typeface:

This is a meaningless long quote that I’ve made up on the spur of the moment to illustrate what I mean in the previous paragraph, and it is what I wrote and that’s that, blah, blah, blah.

If some text is already selected when you run this macro, it assumes that this is the text to be displayed. However, if no text is selected, it searches for the next long quote.

For the displayed text, it uses the style whose name is set at the beginning of the macro, and then if the quote is currently in the middle of a paragraph, is sets the following paragraph to a style of your choice. This is useful where most paragraphs have a first line indent, and then you have a zero indent on the following line to show that the paragraph is still continuing.

displayedQuoteStyle = "DisplayQuote" 	[Style for displayed paragraph]

nextParaStyle = "Body No Indent" 		[Style for next paragraph]

' Or if you don't want to change next paragraph style
' nextParaStyle = ""

removeQuotes = True		[Remove the quote marks or not]
minWords = 40			[min length of quote for displaying]

singleQuotes = False		[single or double quotes]

addTags = True/False		[do/don’t add tags]
startTag = "<DQ>"		[start and (below) end tags]
endTag = "<\DQ>"

tagOnNewLine = False		[Tag on end of displayed para or on next line]

Sub DisplayQuote()

[bookmark: _Toc55977319][bookmark: _Toc164353130]Highlight (and/or style) all indented paragraphs
Another related macro is to highlight those paragraphs that are indented, the idea being to identify the displayed quotes. The trouble is that you can’t easily use F&R because, often, the author will ‘hand indent’ the quotes. In other words you don’t know exactly what the magnitude of the indent will be, so F&R is difficult, to say the least.

The alternative offered here is simply to highlight (and/or style) all paragraphs that have any indent at all. OK, you may get some false positives, but it’ll probably be quicker than doing in all manually.

The macro was written to just highlight the paragraphs, but if you use the two turquoise lines it will actually apply the style to them.

Sub HighlightIndentedParas()

[bookmark: _Toc55977320][bookmark: _Toc164353131]Change the indent of specific indented paragraphs (1)
One reader wanted to find all paragraphs indented by 1.25 cm and change the indent to zero. This macro does so.

Sub IndentChanger()

[bookmark: _Toc55977321][bookmark: _Toc164353132]Change the indent of specific indented paragraphs (2)
Another reader’s client wanted to find all paragraphs with a first line indent and (a) remove the indent and (b) add a tab stop at 0.25″. This macro does so.

Unfortunately, some paragraphs already had a 0.1″ FLI, so this had first to be remove, or the tab would only take the text to 0.1″. This is done with:

 .ParagraphFormat.TabStops(InchesToPoints(0.1)).Clear

Adjust to taste. :-)

It also now has the option to use centimetres instead of inch measurements. For this, use:

 useInches = False

Sub FirstLineIndentToTab()

[bookmark: _Toc55977322][bookmark: _Toc164353133]Apply styles to all paragraphs except headings
One reader wanted to apply ‘BodyStyle’ to all paragraphs other than those such as ‘Heading 1’, ‘Heading 2’, etc. But the paragraph immediately after each heading should be ‘NoIndent’ style. This macro does so.

Sub StyleBodyIndent()

[bookmark: _Toc164353134][bookmark: _Toc55977323]Apply character style to headwords
One reader wanted to apply ‘EntryBib’ style to all paragraphs that have a specific style (‘Normal,Normal full left’). This macro does so.

Sub FormatHeadwords()

[bookmark: _Toc164353135]Count the highlighted areas
The purpose of this macro was, originally, to give a way of quickly counting how many serial comma or not serial comma occurrences there were in a text (see under DocAlyse). I used a FRedit list to highlight one in light grey and the other in dark grey, and then counted them.

(But DocAlyse has been greatly improved, so this is probably redundant.)

Sub CountHighlightColour()

[bookmark: _Toc55977324][bookmark: _Toc164353136]Every ‘Normal’ paragraph to ‘Body Text’
(This macro is, of course, redundant because, using the Styles and Formatting pane, you can select all occurrences of Normal, and then apply the style Body Text. Doh! But I’ve left it in because if you have to change several styles, you could use this macro as a way of automating it.)

This macro applies the style ‘Body Text’ to every paragraph that is currently in Normal style. Every other paragraph that is in ‘Heading 1’ or ‘Table Text’ or whatever style remains unchanged.

 Using Body Text rather than just Normal is, apparently, more helpful when importing into InDesign.

The same macro could, of course, be used for changing paragraph between any two named styles.

Sub BodyTexter()

[bookmark: _Toc55977325][bookmark: _Toc164353137]Coding (tagging) every bold heading
If the author has simply made every heading bold, this macro will add a code (myCode1) to each such heading. Optionally, if you have some of the headings that start with a number and you want those to be a different code (myCode2), this macro will do the necessary wildcard F&R for you (or you could just put it in your FRedit list).

If you don’t want this optional feature, then set myCode2 = "".

Sub CodeBoldParas()

[bookmark: _Toc55977326][bookmark: _Toc164353138]Adding coding (tagging) automatically
If you have to code the various styles in a document, this macro will do it automatically. Basically, you add whatever styles you want to the document and then run the macro. It goes through the whole document, paragraph by paragraph, checks the styles and adds the appropriate coding tags.

If you look at the macro, you’ll see that coding tags to be used are specified by the items in the ‘Case’ list, such as:

 Case "Heading 1"
 startText = "<A>": endText = ""

So you can add whatever style names and tag texts you want. Any style that is not included in your list will not be tagged.

If you only want a tag at the beginning of the paragraph and not at the end, just use, for example:

 startText = "<A>": endText = ""

Sub AutoTagger()

If you run the macro and then decide that another style type needs coding, you can just add it to the list and rerun the macro. Any line that is already tagged doesn’t get retagged; it is simply ignored.

If you want the tags to stand out in some way, you can make them bold or larger font size or whatever by extending the ‘If’ statement at the end of the macro as follows (adjust to taste):

 If rng.Characters(1) <> "<" And startText > "" Then
 rng.InsertBefore startText
 rng.End = rng.End - 1
 rng.InsertAfter endText

 Set bit = ActiveDocument.Range(rng.Start, rng.Start + Len(startText))

 bit.Font.Size = 24
 bit.Font.Color = wdColorRed
 bit.Font.Italic = False
 bit.Font.Bold = True
 bit.Font.Name = "Arial"

 Set bit = ActiveDocument.Range(rng.End - Len(endText), rng.End)

 bit.Font.Size = 24
 bit.Font.Color = wdColorGreen
 bit.Font.Italic = True
 bit.Font.Bold = False
 bit.Font.Name = "Arial"
 End If

[bookmark: _Toc55977327][bookmark: _Toc164353139]Add line space after all tables before headings
Sounds a bit odd, but this is for when I’m tagging all hierarchically numbered headings using wildcard find and replace, for example:

| anything such as 3.4 followed by <tab> or <space> = A head
| and such as 3.4.5 is a B head, etc
~^13([0-9]@).([0-9]@)[^t^32]|^p<A>\1.\2^t
~^13([0-9]@).([0-9]@).([0-9]@)[^t^32]|^p\1.\2.\3^t
~^13([0-9]@).([0-9]@).([0-9]@).([0-9]@)[^t^32]|^p<C>\1.\2.\3.\4^t

So, the trouble is that these F&Rs don’t work if a table immediately precedes the heading, because the table doesn’t end in a conventional newline (^p or ^13) character. The idea then is to look through all the tables and add a newline after any table that is immediately followed by a heading.

Sub TableSpaceBeforeHeading()

[bookmark: _Toc55977328][bookmark: _Toc164353140]Coding (tagging) displayed quotes
If the author has helpfully indented the displayed quoted, then even if they’ve not used a style, you can code (tag) them automatically. This macro looks for any paragraph(s) that have a left indent and adds <disp> in front and </disp> at the end (you can change it to whatever text you want).

<disp>The codes are added in the positions as shown in this paragraph, but if you want the </disp> tag to be on the beginning of the next paragraph, just let me knw; it’s a simple enough tweak to make to the macro.</disp>

And if the quote consists of multiple paragraphs, the macro removes the </disp> and <disp> that occur in between two indented paragraphs, so you end up with one tag at the beginning of the quote and one at the end.

Sub CodeIndentedParas()

[bookmark: _Toc55977329][bookmark: _Toc164353141]Coding (tagging) bulleted list
If bulleted lists are in Normal style (and not, say, ListBullet), you can tag/code them by the fact that they have a negative first indent. Run the macro, and all the bulleted lists will come out as:
<BL>• This is the first line.
• Second line
• Third line
• Fourth line
• Fifth line
</BL>

Sub TagBulletLists()

[bookmark: _Toc55977330][bookmark: _Toc164353142]Formatting numbered list item
This is one I use when I’m working for a publisher that likes lists numbered as:

1. This is the first line.
2. Second line
3. Third line
4. Fourth line
5. Fifth line

But the authors have used:

1) This is the first line.
2) Second line
or
(1) This is the first line.
(2) Second line

So the macro corrects it line by line.

Sub ListItemNumberFormatter()

[bookmark: _Toc164353143]Adding bold to first word of list (glossary)
If you have, say a list of words with their definitions, and you want each of these headwords to be bold, this macro does it for you.

Sub BoldFirstOccurrence()

[bookmark: _Toc55977331][bookmark: _Toc164353144]Using manual line breaks in and poetry (verses) and/or lists
If you have a poem that is formatted using double returns between verses, the formatting can be problematic. This can by changed using manual line breaks after each line within each verse, and a single return (end-of-paragraph, ^p) between verses.

So, if you click in the first line of the first verse, and run this macro, it will change the returns to line breaks (^p to ^11) for each line, except the last, and will remove the double return at the end.

If the macro is assigned a keystroke, then you can click, click, click your way through the poem. However, if you select the whole poem, from somewhere in the first line to somewhere at the end (you can be quite approximate in your selection) and run the macro, it formats the whole of the selection in one go.

The same macro can also be used for a list or lists.

Sub VerseListFormat()

[bookmark: _Toc55977332][bookmark: _Toc164353145]Adding (coloured) tags to all italic/bold text
Some publishing clients want all italic text to have tags before and after in colour, as <i>shown</i> here. So this macro goes through the whole file and adds such tags. (And ditto for bold.) You can do italic and/or bold by setting the two variables at the beginning, e.g. for italic but not bold:

doItalic = True
doBold = False

Sub ItalicBoldTagger()

And a more comprehensive version that covers bold, italic, sub- and superscript, underline and strikethrough:

Sub TagVariousAttributes()

[bookmark: _Toc55977333][bookmark: _Toc164353146]Adding (coloured) tags to selected text or to next bold text
If the previous macro – doing the tagging globally – is not suitable, this macro speeds up local, individual tagging. It has two mechanisms.

If no text is selected, it zooms along the line to find the next bit of text in bold, and adds coloured tags to it.

If some text is selected, it tags it.

(The macro could easily be changed to tag the next italic bit, instead of bold. If you’re not sure how, do just ask me.)

Sub TagSelectedOrBold()

[bookmark: _Toc55977334][bookmark: _Toc164353147]Adding an <ni> tag to the first line after each heading
If you want a no-indent tag (e.g. <ni>) after each heading, i.e. before the next paragraph, then this macro does it for you.

Sub TagNI()

[bookmark: _Toc55977335][bookmark: _Toc164353148]Listing all tagged section headings
(Video: youtu.be/DnG1XCuOUlk)

If you’ve applied tags <A>, , etc to your section heads (using FRedit?), then one way to check that they are correctly numbered is to create a list of all the paragraphs that start with <A>, , etc.

The list might also be used for a contents list, but the ContentsListByTag macro is better for that as it deletes the tags and formats the list. If you just want to check the numbering then this is a lot quicker than ContentsListByTag.

If it would be helpful, you can create a copy of the macro, call it ListOfTaggedHeadingsTextOnly, then run them both, at the end of your FRedit list:

DoMacro|ListOfTaggedHeadingsTextOnly
DoMacro|ListOfTaggedHeadings

Then you end up with a pure text version, and one with formatting – but I guess you could just do it formatted and then take the formatting off with NormaliseText.

If you then want to check that the numbering is properly hierarchical and contiguous, you can use NumberSequenceCheckerHierarchical, although you’ll first have to strip off the tags:

~\<[ABCDE]\>|

Sub ListOfTaggedHeadings()

[bookmark: _Toc55977336][bookmark: _Toc164353149]Adding full point to ends of captions
One publisher I work for insists that all figure and table captions should have a full point, whether the text forms a sentence or not. This macro looks for a specific tag (<Cap>, but you can change it) and, if necessary, adds a full point.

Sub FullPointOnCaptions()

[bookmark: _Toc55977337][bookmark: _Toc164353150]Adding styles to numbered headings
If your text uses various levels of numbered headings, subheadings and subsubheadings – 1.2, 1.4.1, 1.2.1.6 etc then this macro will look at each heading, decided what level it is from the number of full stops in the heading number, and style the heading accordingly: Heading 1, Heading 2 etc.

N.B. It assumes that there is a tab character after the heading number. If the text has a space, then change the ‘delimiter’ at the start of the macro.

It works so quickly that I’ve added a beep at the end so that you know it has finished. If you are changing heading levels, by adding and subtracting numbers then you can, of course, change the heading style manually, but you can just as easily run the macro to ‘refresh’ the heading styles.

Sub HeadingStyler()

[bookmark: _Toc55977338][bookmark: _Toc164353151]Coding the first lines of a chapter
This is just a macro I ran up for a specific job, but it’s maybe something you could adapt and use in your own situation. Each chapter started with, something like:
6
Visual Attention in Coding
Joe Bloggs and Fred Brown
The Concept of Visual Attention
Visual attention is, blah, blah, blah

So I was coding it, by adding the same codes in each chapter. (Doing something over and over again => use a macro.)

In this case, I’ll break my normal rule, and not put the macro separately at the end of the book, but rather put it here so you can see how it works and therefore, hopefully, be able to modify it for your own use.

Sub CodeFirstLines()
' Version 05.12.12
' Prepare the file by adding codes etc

code1 = "<CN>"
code2 = "<CH>"
code3 = "<CA>"
code4 = "<A>"

myLine = 1
For Each myPara In ActiveDocument.Paragraphs
 If Len(myPara.Range) > 1 Then
 If myLine = 4 Then
 myPara.Range.InsertBefore Text:=code4
 Exit For
 End If
 If myLine = 3 Then
 myPara.Range.InsertBefore Text:=code3
 myLine = 4
 End If
 If myLine = 2 Then
 myPara.Range.InsertBefore Text:=code2
 myLine = 3
 End If
 If myLine = 1 Then
 myPara.Range.InsertBefore Text:=code1
 myLine = 2
 End If
 End If
Next myPara

' Set 1.15 spacing
Set rng = ActiveDocument.Content
rng.ParagraphFormat.LineSpacing = ActiveDocument.Styles("Normal").Font.Size * 1.15

' Set language UK

ActiveDocument.TrackRevisions = False
Set rng = ActiveDocument.Content
rng.LanguageID = wdEnglishUK
rng.NoProofing = False
ActiveDocument.Styles("Normal").LanguageID = wdEnglishUK

' Switch on track changes
ActiveDocument.TrackRevisions = True
End Sub

So the macro first adds codes to each of the first four paragraphs. Then it sets the line spacing of the whole file to 1.15 lines (obviously you can use a different spacing, or delete it altogether.

Then it sets the language for the whole file to UK English. (It switches off track changes before doing so; otherwise it will generate unwanted ‘Formatted: English (U.K.)’ track changes.)

Then finally, it switches track changes on, because that’s what I needed for that job.

[bookmark: _Toc55977339][bookmark: _Toc164353152]Showing style names within text (= adding style codes)
I wrote this macro because I was frustrated that the only way to make style names visible on screen is to go into Draft mode, and I hate working in Draft mode! So what this macro does is to add the style names, as text, at the beginning of every (non-Normal style) paragraph:

[bookmark: _Toc55981627][bookmark: _Toc55981725]<|Heading 2|>This is a sample heading
As Fred Bloggs, that famous expert, once said:
<|Displayed quote|>This is a dummy quotation saying nothing but illustrate the principle of what I’m trying to do here.

I’ve used the hopefully unique combination of angle brackets and a vertical bars so that if you run the macro a second time, it recognises that the file contains these visible style names and deletes them all. So the macro is like an on-off switch for these visible style names.

Obviously, you don’t want Normal style showing, but if there are others you don’t need to see, just add them to the noShow list:

noShow = ",Normal,"
noShow = noShow & "TOC 1,TOC 2,TOC 3,Table of Figures,"

You can add names to the list, but just be sure to keep the commas as separators.

Then I thought it would be good to allow abbreviations – to make the names less intrusive. So instead the heading above could be:

[bookmark: _Toc55981628][bookmark: _Toc55981726]<|H2|>This is a sample heading

But hang on! If you set Heading 1 as A, Heading 2 as B, Displayed Quote as DQ etc, then take away the vertical bars, that’s what you want for typesetting codes:

[bookmark: _Toc55981629][bookmark: _Toc55981727]This is a sample heading

So that’s the other job you can use this macro for: coding your text. If you have

removePads = True

at the beginning of the macro then, when it has added the codes, it will ask if you want it to also remove the pads.

The abbreviations/codes are set at the beginning of the macro:

abbrvs = ",MTDisplayEquation,Disp,Heading 1,A,Heading 2,B,"
abbrvs = abbrvs & ",Heading 3,C,Heading 4,D,"

If you add/subtract abbreviations, just make sure that you have a comma before and after each name or code.

Sub ShowStyles()
[bookmark: _Toc55977340][bookmark: _Toc164353153]Simple number sequence checker
(Video: youtu.be/2hrfWRyDx18)

This is a very simple macro that looks to see if a series of numbers, whether as a numbered list, or numbers within a paragraph are consecutive. So it will spot errors such as this:

There are ten reasons for this: (1) ksjhgkjdhf (2) skjdf ghdsfgdkjsf gkjd (3) hadk hg kajdhsfkj asd (4) fg kjdf (5) mngfngndng (6) ahsd fakj fkj (7) akjhsd g gmj dfg (9) ghskdfhgkhsfkjdgh (10) jahsdgfhfj akj
or this:

There are ten reasons for this:
1. ksjhgkjdhf
2. skjdf ghdsfgdkjsf gkjd
3. hadk hg kajdhsfkj asd (Smith 2016)
4. fg kjdf
5. mngfngndng
6. ahsd fakj fkj (Brown 1989)
7. akjhsd g gmj dfg
9. ghskdfhgkhsfkjdgh
10. jahsdgfhfj akj

It will ignore years, so in the list above, it won’t be distracted by the citations. This is set by the line at the beginning of the macro:

dateStart = 1800

So if it’s dates that have to be consecutive, you can change it to, say, dateStart = 100000.

Sub NumberSequenceCheckerSimple()

[bookmark: _Toc55977341][bookmark: _Toc164353154]Decimal number sequence checker
(Video: youtu.be/2hrfWRyDx18)

This macro check that a series of decimal numbers is ‘consecutive’, so it will spot the error in this:

There are ten reasons for this: (2.1) ksjhgkjdhf (2.2) skjdf ghdsfgdkjsf gkjd (2.3) hadk hg kajdhsfkj asd (2.4) fg kjdf (2.5) mngfngndng (3.1) ksjhgkjdhf (3.2) skjdf ghdsfgdkjsf gkjd (3.3) hadk hg kajdhsfkj asd (3.4) fg kjdf (3.5) mngfngndng (3.6) ahsd fakj fkj (3.7) akjhsd g gmj dfg (3.9) ghskdfhgkhsfkjdgh (2.10) jahsdgfhfj akj

or this

There things in different chapters:
2.1 ksjhgkjdhf
2.2 skjdf ghdsfgdkjsf gkjd
2.3 hadk hg kajdhsfkj asd
2.4 fg kjdf
2.5 mngfngndng

3.1 ksjhgkjdhf
3.2 skjdf ghdsfgdkjsf gkjd
3.3 hadk hg kajdhsfkj asd
3.4 fg kjdf
3.5 mngfngndng
3.6 ahsd fakj fkj
3.7 akjhsd g gmj dfg
3.9 ghskdfhgkhsfkjdgh
3.10 jahsdgfhfj akj

I’ve set it up so that when it gets to the end of a list, it doesn’t search too far through the text before it finds something that’s ‘not consecutive’. The distance it travels before it gives up is set by:

tooFar = 3000

That’s 3000 characters, so about 500 words.

Sub NumberSequenceCheckerDecimal()
[bookmark: _Toc55977342][bookmark: _Toc164353155]Number sequence checker hierarchical
(Video: youtu.be/DnG1XCuOUlk)

If you have a long, numbered list and you want to check that there aren’t any missing (or extra) numbers, simply place the cursor on the first item (or indeed any item further down the list) and run the macro. It will do its best to see what the pattern is (e.g. a number and a space, or a number and a tab), and then go down the list number by number.

If it finds an error, it stops – and optionally highlights the numbers that it thinks are not in sequence. You can sort it out and then start again from whichever item you like.

It will even work with, say, Figure 1, Figure 2 etc, or Table 1, Table 2 etc.

What’s more, if your document has ‘dotted’ section numbers (or figure or table numbers) at various levels (e.g. 2.3.6.1), then the macro checks the numbering, in and out of all of the different levels of heading.

[bookmark: _Toc55981630][bookmark: _Toc55981728]In use
If you start from a line that says, for example

Figure 2.4	This is a picture of an elephant

It looks to see what comes before the number (“Figure<space>”) and what the character immediately following is (here a tab), and it looks to see that the next “Figure ” (or whatever word is used) is either 2.5, or 2.4.1 (more likely with section numbering than with figures).

So if we were to start at, say, section 3.4.5.2, it would check whether the next one was 3.4.5.2.1 or 3.4.5.3, or 3.4.6 or 3.5 or 4.1.

And there’s even an option (allowSingleNumbers = True) to go down to the next single numbers – in this example it would be 4. The only trouble with that is that it’s more likely to get confused and find an ‘error’ in the consecutivity that is just some other text within the flow of the document.

And it also tries to cope with the fairly frequent case where a paragraph starts with, say, “Figure 3.4 shows that...”. This wouldn’t be a problem if the captions used a tab after the fig number – as above – but if the caption uses a space, the paragraph might then look like a caption. To try to give some discrimination, there’s a parameter (captionWordsMax = 30) that sets the maximum number of words which it considers to be a caption as opposed to a paragraph. Clearly, this might need to be increased if you were checking, say, a references list.

[bookmark: _Toc55981631][bookmark: _Toc55981729]Errors to watch for
If the program stops, and it has not reached the end, it highlights the last ‘acceptable’ number (turquoise) and the number it thinks is erroneous (red). Now, if, for example, a heading has a space instead of a tab, it will be ignored, so the macro will jump to the following heading and say that that heading is out of sequence, so always check the previous heading, as well as the one on which the macro stops.

When the macro stops, the Word’s Find function is set up for you with the wildcard find needed to jump from heading to heading, so you can jump back and forth between the ‘headings’.

It might actually be worth having formatting showing (Ctrl-Shift-8) because spaces and tabs are crucial. For example, a redundant space after the number and before the tab would be invisible but would cause an error. (But then, as part of your tidy-up of the file, you will presumably have changed ‘^32^t’ into ‘^t’, won’t you?!)

[bookmark: _Toc55981632][bookmark: _Toc55981730]Phantom errors
False positives can sometimes be caused by track changes in the heading, so make sure that track changes are visible, and then just try accepting the track change on the heading, then go back to the previous heading and run the macro again.

The macro can sometimes have problems when it gets into tables, and it may well not be able to cope with textboxes. It should navigate its way out of each table, but if it gets stuck in a loop, stop the macro (Ctrl-Break†), and click on ‘End’. Then manually check the heading number above the table, move past the table to the next heading and carry on from there.

(†If your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP PRESS! I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard – press Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’. Yay! Result!)

If you have a file on which the macro founders, and you’d like to use the macro for similar jobs, please send me a sample file (confidentiality permitting, of course), and I’ll try to find a way of enabling the macro to cope with the extra complications.

Sub NumberSequenceCheckerHierarchical()

[bookmark: _Toc55977343][bookmark: _Toc164353156]Contents list creator by style or number or tags
(Video: youtu.be/DnG1XCuOUlk)

Continuing on the theme of numbering, it can be useful sometimes to create a contents list of a whole document. Here are two macros that do that. The first tries to create the contents list on the basis of the style, specifically paragraphs that are in styles such as ‘Heading 1’, ‘Heading 2’ etc.

The second works on the basis of hierarchical heading numbering.

If the heading levels are tagged <A>, etc the third creates a contents list based on those tags.

I wrote the macros some long while ago (and forgot to put them in my book) in order to check and compare all the headings, rather than to actually generate a real-live contents list, so neither macro currently has the facility to exclude headings at lower levels within the hierarchy. So, if your client wants a contents list of only, say, level 1 and level 2 headings, rather than sit there deleting the lower level headings, let me know, and I’ll add in an exclusion option.

Sub ContentsListerByStyle()

Sub ContentsListerByNumber()

Sub ContentsListerByTag()

[bookmark: _Toc55977344][bookmark: _Toc164353157]Find mismatched parentheses
This macro EITHER goes through the text (starting at the cursor) a paragraph at a time and checks to see if any of them has unpaired brackets, i.e. a different number of open and close brackets (parentheses, I mean). It reports how many such paragraphs it has found, and these paragraphs have the underline attribute added.

It also sets up the F&R so that is ready to find any underlined text, so you can skip through them one by one.

OR it starts from the cursor and searches out the next possible mismatch, allowing you to ignore it and continue, or stop and correct it. For this mode, set at the start of the macro:

stopEachTime = True

Sub MatchParentheses()

And a square bracket version.

Sub MatchSquareBrackets()
[bookmark: _Toc55977345][bookmark: _Toc164353158]Find mismatched double quotes
This macro goes through the text a paragraph at a time and checks to see if any of them has unpaired double quote marks, i.e. either (a) a different number of open and close curly doubles, or (b) an odd number of non-curly double quotes. It reports how many such paragraphs it has found, and these paragraphs have the underline attribute added.

Sub MatchDoubleQuotes()

[bookmark: _Toc55977346][bookmark: _Toc164353159]Find mismatched single quotes
(Latest version allows it to be used in Dutch, which uses single quotes in far more places than English.)

This macro goes through the text a paragraph at a time and checks to see if any of them has unpaired single quote marks, i.e. either (a) a different number of open and close curly singles, or (b) an odd number of non-curly single quotes. It reports how many such paragraphs it has found, and these paragraphs have the underline attribute added.

BUT, as you’ve probably just realised, this isn’t as easy to check the single quotes because of apostrophes, as demonstrated by this paragraph! But I’ve tried to cover as many eventualities as possible.

[bookmark: _Hlk66984455]It underlines all “suspect” paragraphs, but if it’s suspect because there’s an s-apostrophe, it highlight just the s-apostrophe, whereas if it’s more sure there’s a problem, it highlights the whole paragraph.

If you want to use it for other languages that use single quotes in different places, you can adjust the line at the beginning of the macro:

myList = "'s,s','t,'v,'r,'l,'m,'d,'y,'c": UK list
' myList = "'i,'k,'m,'n,'s,'t,'r,'n": Dutch List

Sub MatchSingleQuotes()

[bookmark: _Toc55977347][bookmark: _Toc164353160]Correct double quotes inside double quotes to singles
If the author has used double quote marks inside double quote marks then this macro will go through the whole document and replace the inner quote marks with singles.

Sub QuoteMarkEmbedder()

[bookmark: _Toc55977348][bookmark: _Toc164353161]Section number adding
Another macro linked to the ones above is where you’ve got to add consecutive section numbers to the subsections following a section heading. Here’s an example text:

	1.9.6	This Title has a Number Already
	This is a subheading
	Here is the text in this subsection etc, etc...

	Here is another subheading
	And some more text etc, etc...

	Then yet another
	Here’s yet more text etc, etc...

So, to use this macro, you select ‘1.9.6’, copy it with Ctrl-C and run the macro. Because some text is selected, it knows you’re in setup mode, so it suggests a start number for the series of headings. You can press Return to accept the offered number, or enter a different number. In this case you’d want it to be ‘1’, but you might want to add some heading numbers to an existing run.

You now place the cursor somewhere on the first subheading and run the macro. It will add ‘1.9.6.1<tab>’ to the start of the line. Then place the cursor somewhere on the second subheading and you automatically get ‘1.9.6.2<tab>’, and then on the next ‘1.9.6.3<tab>’.

Now suppose that you have a run that ends with, say, 2.2.5, and you want to continue it, select the ‘2.2’ and copy it – the base number – then select the ‘5’ and run the macro. It reads the ‘5’ and offers you ‘6’ as a possible next number. So, if you accept that and then click on the next heading, it will, indeed, be numbered as 2.2.6.

Sub AddSectionNumber()

[bookmark: _Toc55977349][bookmark: _Toc164353162]Automatic section numbering
If the text has headings styled as Heading 1, Heading 2, Heading 3 etc then this macro adds the hierarchical section numbers, starting from the first ‘Heading 1’ style paragraph.

However, if you have prelims that use Heading 1, you can avoid them getting numbered by putting chapWord = "Chap" at the beginning of the macro. (This is assuming that each chapter starts with ‘Chapter 1’ etc, but if you don’t have a standard word for each chapter, I’ll have to make a small rearrangement – let me know.)

If the file starts from, say, chapter 4 then change to chapNum = 4 at the beginning of the macro.

If you don’t want the Heading 1 heading to be numbered, but just to have the Heading 2’s as 1.1 etc then put addChapterNum = False at the beginning of the macro.

Sub NumberParasAuto()

[bookmark: _Toc55977350][bookmark: _Toc164353163]Automatic section numbering (2)
In this case, the numbering is for tagged headings, and for first level headings only (’cos that’s what the person wanted, who asked for it). It reads the chapter number from the first line of the file, which was, e.g. “<cn>3”. The tag text is set in the line: myTag = "<a>".

Sub NumberParasTagged()

[bookmark: _Toc55977351][bookmark: _Toc164353164]Semi-automatic section numbering
(Video: youtu.be/1O8Q-3ys1uo)

I had a job where the headings were not numbered, and they weren’t in the correct case (the client wanted title case, and the authors had used sentence case). Also some of the headings had full points and other punctuation at the end of the line. In some chapters the only indicator of heading level was the font size so I created two new macros, the first of which jumped down to the next heading (i.e. paragraph) that was in a font size larger than the Normal font.

The main macro here is one that types in a section number, plus a tab, and formats the heading, removing any stray punctuation.

So I jump to the next heading then run this numbering macro. It tries to give me the section number that it thinks is right. If it’s not, I can type into the input box the number I want, e.g. 3.1 and press Enter.

Then I jump down to the next heading (or just click in it if it’s visible on screen) and run the macro. It offers me 3.2, so if it’s the same level heading then I just press Enter and carry on to the next heading, for which it offers me 3.3.

But if the next is a lower level heading, I type “-” and press Enter, and it gives me 3.2.1.

Maybe the next is the same level, so I accept 3.2.2. But then if the next heading is a higher level, I type “+” and Enter, and it types in 3.3.

If I get a section number wrong, I can just delete the number, rerun the macro and type in the correct number.

However, I don’t trust myself to get it right! So instead I can go back up to the previous heading and run the macro; now, because the heading is already numbered, the macro knows to read the section number, and not add another one.

Then I can move back down to the incorrectly numbered heading, delete the number and run the macro; it will then increment the section number it has just read, and I can carry on as before.

If I need to move up two levels of the heading hierarchy, I can just type “++”.

As it stands, the macro asserts title case, but if you want sentence case (or you don’t want any changes of case), you can alter the settings at the beginning of the macro:

doSentenceCase = False
doTitleCase = True

Sub TypeSectionNumber()

Sub FindNextBigText()

	
[bookmark: _Toc55977352][bookmark: _Toc164353165]Do ‘such and such’ to every ‘so and so’
Sorry, that sounds a bit weird, but this macro is a ‘shell’ for the more adventurous. You want to go through a text finding something specific using F&R, and then you need to do something to each one – i.e. something more than just replacing it with something else.

You’ll have to have enough macro programming to know how to do to the text whatever you want to do to it, but at least this gives you the skeleton. The format is:

Find ‘something’
Do (if you’ve found one)
 Make some changes to it
 Find the next ‘something’
Loop

I hope that makes sense.

As it stands, it looks for each ‘e’ (or ‘E’) and if it finds it, it uppercases (or lowercases) it and adds a yellow (or red) highlight. (A silly example, I know, but it illustrates the If...Then possibilities.)

Sub FindAndDo()

[bookmark: _Toc55981633][bookmark: _Toc55981731]Sample practical FindAndDo application
One reader discovered that some global F&Rs trip over the track changes. ‘I want to change the hyphen in number ranges to a dash. So that’s Find: ([0-9])-([0-9]) and Replace with: \1^=\2. The macro works until I turn on track changes on and then “4-9” changes to “49–”! How can I avoid that?’

The answer is that you have to use FindAndDo to find each occurrence and the select the hyphen and type a dash instead.

Sub SampleFindAndDo()

[bookmark: _Toc55977353][bookmark: _Toc164353166]Multiple choice answer tidier global
If you have a file full of answers looking like this:

8. Electron transport occurs in the cells:
A. Nucleus.
B. Mitochondria.
C. Cytoplasm.
D. Golgi apparatus.
E. Plasma membrane.
Answer: B
Type: MC
Points: 1

And you want all the answer items to look like this:

8. Electron transport occurs in the cells:
A. nucleus
B. mitochondria
C. cytoplasm
D. golgi apparatus
E. plasma membrane
Answer: B
Type: MC
Points: 1

i.e. to strip off all the rogue spaces/full points etc off the ends and to lowercase the initial letter, then the following macro will go through the whole file and do so.

(OK, yes, you’ll have to go back and uppercase words like Golgi, but that should take less time than doing this item-clean-up manually.)

It assumes each item is A B C D or E followed by a full point followed by a space or tab, and it has a list of erroneous characters that it will strip off the end. These are set in the macro. Please adjust to taste.

As standard, it also highlights the items it has changed, but you can switch that off with: myCol = 0.

Sub MultiChoiceTidierGlobal()

If you prefer to do this one question at a time, there’s a second version.

You run it once and it jumps to the first set of answers, conditions them and stops. If you’re happy with the result (i.e. no need to uppercase, say, Gogli), then you just run the macro again, and keep running it until you get a question where you need to change something.

Sub MultiChoiceTidierSingle()

[bookmark: _Toc55977354][bookmark: _Toc164353167]Highlight all serial commas (or not serial commas)
(This macro could well be superseded by SerialCommaAlyse.)

This assumes that you want to have drawn to your attention, as you read, any text that might be using a serial (Oxford) comma when the brief says ‘no serial comma’. Or contrariwise highlight the not-serial-comma text if the brief tells you to use serial commas.

It’s not obvious to the computer exactly what is and is not a serial comma; consider for example:

1) “I like fish, chips, and peas”

2) “The job entails drilling a hole, countersinking it to the correct depth, and inserting the screw.”

3) “The job is difficult, so you will have to be very careful how you approach it, and it takes a long time.”

So what the macro does is to look for the pattern of commas and words plus the word ‘and’, and it then checks how many words there are in the section of text it has found. If there are too many words, it ignores it.

maxWords = 10

Increase the value of maxWords and you get more false positives, but miss fewer actual (not)-serial commas, and vice versa.

The macro does the test for both ‘and’ and ‘or’.

You can do the ‘highlighting’ either with underlining and/or actual highlights. This is set at the beginning of the macro, where it says, for example:

 doUnderline = True

 doHighlight = False

 myColour = wdYellow

So you change it to, say:

 doUnderline = False

 doHighlight = True

 myColour = wdYellow

and change the colour if you prefer:

 myColour = wdBrightGreen

Sub SerialCommaHighlight()

Sub SerialNotCommaHighlight()

[bookmark: _Toc55977355][bookmark: _Toc164353168]Count the serial commas (or not serial commas)
Running DocAlyse will give you an estimate of the number of lists that have a serial comma and the number that have no serial comma. However, it is only an estimate because what actually constitutes a list is difficult for a computer to accurately judge, so suppose you end up with (as I did on my last job):

serial comma	7
no serial comma	9

I needed a more accurate count, so I wrote this macro. To use it, first run CopyTextSimple to create a nice clean version of the text – after all, it’s only the words that you are assessing, not the formatting (better still, especially for large files, use CopyTextVerySimple).

Then, when you run the macro, it identifies strings of words and commas that might be lists. While it is doing so, it reports how many look serial-like or and how many do not, but note that this may well be a less accurate count than DocAlyse produces.

The macro then gives you the option to decide which of these really are lists by checking the context. (To do this more easily, open the window quite wide, and place the top LH corner of the window up in the top corner of the screen. This makes sure that the prompt windows that the macro throws up do not obscure the text you’re trying to assess.)

As you go through, saying yes or no to the question “Is this really a list?”, it will tot up the numbers of serial/not serial lists, so you can carry on doing this until you feel you’ve got a good enough assessment.

You click Cancel instead of saying yes or no, and this will drop you out of the macro. But then if you restart the macro it will take up from where you left off, giving you the current count, up to that point, and you can check some more potential lists. You will see that it has coloured the lists green or yellow for serial or not serial, respectively

In the example of the file that prompted me to write this macro, the initial count by the macro gave:

serial comma	9
no serial comma	25

and then when I had gone through and checked all the potential lists I got:

serial comma	9
no serial comma	17

So, compared with the 7/9 estimate that DocAlyse gave me, I really had got a clearer answer to my question.

(In fact, I didn’t write this macro until after I had sent the file back to the author, because it was urgent. Fortunately, based on DocAlyse’s 7/9 count, I chose no serial comma!)

Sub SerialCommaCounter()

[bookmark: _Toc55977356][bookmark: _Toc164353169]Highlight duplicate sentences
This macro looks at every sentence in the current document and checks that this same sentence doesn’t occur anywhere else in the document. If it finds duplicates, it highlights them both, the first in grey, the second in yellow.

It ignores sentences shorter than 10 words, so as not to pick up duplicate headings – but you can adjust that to taste.

Sub HighlightDuplicateSentences()

It’s pretty slow, so I’ve tried another technique that’s faster, but it has some limitations. Do give the two of them a go, and see how you get on and report back to me if you think one or other is better.

Sub HighlightDuplicateSentences2()

[bookmark: _Toc55977357][bookmark: _Toc164353170]Check and correct the hierarchy of brackets/braces/parentheses
The aim of this macro is to check and, if necessary correct, hierarchical enclosures – {, [and (– using whatever order your client wants.

The macro starts from the current cursor position and works its way down through the text, correcting the order of the enclosures used. However, if there is a section of text where the number of open enclosures is more than three, or if the number of close enclosures is too few or too many, it stops, highlighting the region in which it thinks there’s an error.

You can then correct the mistake and start up the macro again from that point onwards.

If there are areas of text (such as quotations or references lists) that you don’t want changing then, as with many of my macros, you can apply the strikethrough attribute, in which case the macro ignores that section of text.

The actual hierarchy used is set at the beginning of the macro with lines such as:

'myOrder = "{([])}"
'myOrder = "([{}])"
myOrder = "{([])}"

so just add or delete the ‘comment’ apostrophes, according to taste.

The macro will work with track changes switched ON, but be very careful because track changes can easily cause problems.

The most important principle for using it with track changes is: only run the macro once on any given section of text. The reason is that once some of the enclosures have been edited, the F&Rs that the macro uses will ‘see’ all the enclosures – the originals, and the replacement ones – so it can’t work out what’s what.

So this is my suggested procedure with track changes.

1) Move the cursor to the top of the document and run the macro. When it finds a set of enclosures that don’t match, it stops and highlights the area within which the error lies.

2) Correct the number and hierarchy of enclosures yourself (with track changes still ON).

3) Move the cursor immediately past that set of enclosures and run the macro again.

Sub EnclosureFixer()

[bookmark: _Toc55977358][bookmark: _Toc164353171]Remove all formatting except URLs
Someone wanted a clean, text-only version of a Word file, but with the URLs still blue and underlined.

Sub FormatRemoveNotURLs()

[bookmark: _Toc55977359][bookmark: _Toc164353172]Apply global highlighting with track changes
If you want to apply a highlight to a specific word/phrase in a document, but want the highlighting tracked, you can’t do it with global F&R. Even if track change is on, global F&R will not track the highlighting. So you have to use a trick.

Use a dummy attribute that is not used anywhere else in the document, and apply that to the word/phrase(s) using FRedit. Then run this macro, which uses the find-and-do technique to find each of these attributes, switch track changes off and remove the attribute.

I’ve set it up so that you can choose to use any (or all) of three different attributes to give three different colours of highlighting. So at the start of the macro you have, for example:

myAllCaps = wdYellow
mySmallCaps = wdBrightGreen
myUnderline = wdNoHighlight

which means that any text in allcaps will go back to not-allcaps and be highlighted in yellow, any text in smallcaps will go back to not-smallcaps and be highlighted in bright green; however, any text that is underlined will be left untouched. (The ‘wdNoHighlight’ just gives the value zero, so you could equally well use: myUnderline = 0.)

So a sample FRedit list for this would be:

| ‘and’, using allcaps
AND|^&

| ‘you’, using smallcaps
YOU|^&

DoMacro|HighlightWithTrackChange

I realise that allcaps and smallcaps can be a bit confusing in the FRedit list, and so I’ve provided the option to use underlining, though I realise it’s often us for URLs such as: www.archivepub.co.uk.

Sub HighlightWithTrackChange()

[bookmark: _Toc55977360][bookmark: _Toc164353173]Apply highlights and/or colours to ‘confusables’
(Video: https://youtu.be/GPa1ItHFfCc)

This macro was generated to assist someone who wanted to draw attention to homophones and homonyms within a text, to provide a prompt to check that the word was indeed the right one. However, the macro is ‘content free’, i.e. you can use it for whatever words/phrases you want.

Simply create a list of the words/phrases and colour or highlight them according to taste. For example:

assent
ascent

horde
hoard

premier
premiere

N.B. If any of the words in the list are both uncoloured and have no highlight, the macro will do what you ask – apply no colour and no highlight to those words! Just saying. :-)

Now save this file with the name ‘Confusables’ in a folder of your choice, and then add the full address of that file into the macro:

myFile = "C:\Documents and Settings\Paul\My Documents\Confusables.docx"

To avoid highlighting words within words, at the beginning of the macro it says:

onlyColourWholeWords = True

However, if you have some reason to want to use this for part-words, simply change it to False.

Sub Confusables()

[bookmark: _Toc55977361][bookmark: _Toc164353174]Correct accidental double capitals
HEre’s a macro to correct a very common typing error. It looks for occurrences of a double initial capital and corrects them to a single initial capital.

You can highlight and/or font-colour the changes according to the settings at the beginning of the macro.

Sub CapitaliseUndoubler()

[bookmark: _Toc55977362][bookmark: _Toc164353175]Correct spaces and punctuation on superscripted numbers
Suppose you have references or footnotes callouts that aren’t linked fields but rather are just pure text, superscripted numbers, like this 23. So if, as in this example, there is a rogue space in front of the number and/or the punctuation comes after the number, rather than before, then this macro corrects them, right through the document.

Sub SupercriptNumberFormatter()
[bookmark: _Toc55977363]
[bookmark: _Toc164353176][bookmark: _Hlk113118266]12 Editing – text change ____
As you are reading the text, you do lots of minor editing actions: adding a comma, hyphenating two words, switching the order of words two (sic) etc. So, if you ‘watch’ yourself at work, you’ll see which of these actions you do most frequently, and therefore which, if speeded up, could (a) save you a little bit of time (and little bits all add up), and more importantly (b) enable you to make those minor changes automatically without taking your attention off the meaning of the text that you are reading; you’re then less likely to make that classic mistake of missing the second of two closely adjacent mistakes in the text.

For these macros to be of most use, they have to be assigned to keystrokes, which means having to remember them. So that means (a) choosing keystrokes that you find memorable and/or (b) only assigning macros to things that you will use regularly. However, if you start by using just a few of these ‘mini-macros’, you will become confident with them, and then you can add some more, and gradually you will build up your speed and effectiveness in using them.

[bookmark: _Toc55977364][bookmark: _Toc164353177]Change case of next letter
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This macro changes the case of the letter to the right of the cursor. If you were to put the cursor to the left of the ‘c’ of ‘changes’ and run the macro repeatedly, you would get:

C|hanges
CH|anges
CHA|nges
CHAN|ges
etc.

Now go back to the ‘C’ and do it again, and you’d get:

c|HANges
ch|ANges
cha|Nges
chan|ges.

If you assign this macro to a suitable key shortcut, you can even hold the key down and auto-repeat if necessary.

Sub ToggleNextCharCase()

You could use this simpler, and more ‘obvious’ format of macro:

Sub ToggleNextCharCase2()
' Version 28.09.09
' Change case of the next character/selection
Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend
Selection.Range.Case = wdToggleCase
Selection.MoveRight Unit:=wdCharacter, Count:=1
End Sub

However, when you are using track changes, Word does not track these case changes!

So there’s a version of the macro that includes both of the above with an option at the beginning so that you can use the same keystroke but, by changing the first line of the macro, you decide whether to have track changes showing (trackIt = True) or not showing (trackIt = False).

In fact, this version also has another feature: if no text is selected then, as before, it changes the case of the next character; however, if some text is selected, it changes it all to lowercase or uppercase. This means that the one macro can do more than one job.

What’s more, it tries to do it ‘intelligently’; that is, it looks to see how much of the selected area is already uppercase/lowercase and decides on the basis of a ‘vote’, which way to case it: i.e if most of it is in lowercase, it assumes you want the whole thing uppercase, and vice versa.

But if it gets it wrong, all you do is run the macro a second time and it reverses the case.

Sub CaseNextChar()

[bookmark: _Toc55977365][bookmark: _Toc164353178]Change case of initial letter of next word
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This changes the case of the first character of the following word. If this is assigned to a keystroke, you can quickly and easily change a line of text to all initial caps. (See also the TitleCapper macro.)

The simple way to change case would be to use Word’s case-change command:

Selection.Range.Case = wdToggleCase

but this does not generate a track change, so the macro, as written, makes the change by deleting the initial letter and then typing in a letter of the opposite case (as in the previous macro) – this will now show up on track changes. If you have a job where there are lots of case changes and you don’t want to show them, you can change the initial line of the macro to ‘trackit = False’.

As with the previous macro, if an area of text is selected, it changes all of the text to initial capitals or lowercase.

Sub CaseNextWord()

This new version is more intuitive for some: You click in the word whose case needs changing, and when the case has been changed, it jumps right one word, just in case you want to change the next word too.

Sub CaseThisWord()

And if you’re a really, really sad macromaniac, here’s a macro which switches the case of the initial letter – not of the next word but the next-but-one word. Ctrl-Alt-S for me switches the initial of the next word and so, ‘stretching a bit further to the right’, Ctrl-Alt-D changes the next-but-one word.

Sub CaseSecondNextWord()

[bookmark: _Toc55977366][bookmark: _Toc164353179]Change case of initial letter of the paragraph
I have one client who constantly has lists where you:

• Have one line

• And another line

• Then another line

• And all have a blessed initial capital!

The macro below allows you to put the cursor (anywhere) on the first line, run it, and it changes (toggles) the case of the first character of that line, but then it moves down a paragraph so that you are then ready to run it again to change the next item, and again, and again – click, click, click, click, and all four are changed.

Sub CaseNextPara()

[bookmark: _Toc55977367][bookmark: _Toc164353180]Paragraph to start lowercase and end with semicolon
This is for those clients who want every item in a bulleted list to start with a lowercase character and end with a semicolon. As with the previous macro, it does the job on one line and jumps down a line ready to do the same on that line. OK, on the last line you only want to lowercase the initial letter but not add the semicolon, so you have to use CaseNextPara instead. And then you go back a line and add you ‘ and’ after the semicolon.

The following macro does the whole list at one go!

Sub SemicolonEndPara()

[bookmark: _Toc55977368][bookmark: _Toc164353181]Semicolonising a list (+ lowercase start letter)
You have a bulleted list (either auto-bulleted or with editable bullets), and you want to make sure that (a) every item starts with a lowercase character, and (b) that every item ends with a semicolon, but (c) the final item has a full stop, and (d) the penultimate item has ‘; and’ (this last is optional).

This macro does it all. Place the cursor on the first line of the list and run the macro – job done!

Because it ‘shoots’ through the bullets so quickly, I’ve added a ‘safety catch’ (pun intended). After having done 10 bullet points, it asks whether you want to continue. This is just in case you encounter a list that is, say, actually in Normal or Body Text style, in which case it would keep going until it found a paragraph that was not in that style. OK, you can Ctrl-Z your way back, but it would be a bit of a pain. (You can change the frequency of these checks using the checkLength = 10 line.

If you don’t want the ‘ and’, then use addAnd = False.

Sub ListLowercaseSemicolon()

[bookmark: _Toc55977369][bookmark: _Toc164353182]Semicolonising a list
For some applications, you might not want to force all the initial letters of every item to lowercase. This version just does the semicolonising and the (optional) and-ing.

Sub ListSemicolon()

[bookmark: _Toc55977370][bookmark: _Toc164353183]Lowercasing a list and no punctuation
(Video: youtu.be/AYgsFmFA7gU)

For some applications, you might want to force the initial letters of each item to lowercase and also remove the punctuation on the end of each item. This macro does this a line at a time. It also tries to work out if it’s the last item in the list, in which case you might want to keep the full stop on the last item.

Doing it a line at a time can sometimes be helpful where some items begin with a proper noun or an acronym. If so, for that line you just delete the punctuation manually and run the macro on the following item.

You can decide not to track these changes, even if track changes are switched on. This is set by the line at the beginning of the macro:

trackThis = True

Just change it to False.

Sub ListLowercaseNoPunct()

[bookmark: _Toc55977371][bookmark: _Toc164353184]Uppercasing a list and no punctuation
Ditto to the above macro, but uppercasing the first letter of each item.

Sub ListUppercaseNoPunct()

[bookmark: _Toc55977372][bookmark: _Toc164353185]Adding full point to ends of bullet items
One publisher I work for insists that all figure and table captions should have a full point, whether the text forms a sentence or not. This macro looks for a specific tag (<Cap>, but you can change it) and, if necessary, adds a full point (period).

Sub FullPointOnBullets()

[bookmark: _Toc55977373][bookmark: _Toc164353186]Type, delete or switch ‘the’/‘a’/‘an’ (‘The’/‘A’/‘An’)
(This macro gets a mention in video: youtu.be/mVBJ1jjQwdk)

This sounds a bit odd, but it’s for those occasions where your author is from a language that doesn’t have definite and indefinite articles (e.g. Chinese and E. European). This macro aims to deal with cases where an article needs adding, deleting or switching a/the or vice versa.

1) Place the cursor anywhere within a word and a ‘the’ is added in front of it. (Don’t worry about capitalisation because the macro will change, say, ‘previous sentence. Next sentence starts here...’ into: ‘previous sentence. The next sentence starts here...’

2) If you click in a word that already has an article ‘the’/‘a’/‘an’ then it switches between definite and indefinite.

3) If you want to delete an article, click in the article to be deleted – the macro again sorts out the capitalisation.

4) If you want to add a/an/A/An in front of a word, you can either use the next macro, TypeA, or if you select the word instead of just clicking in it, then this macro knows to adds an indefinite article. You can decide which you find more intuitive – remember a new keystroke or remember to double-click the word.

(I use Alt-T for TypeThat, and Alt-E for this macro, as I think of it as typing ‘thE’. So then between keys E and T is R, so I use Alt-R for TypeA.)

Sub ArticleChanger()

[bookmark: _Toc55977374][bookmark: _Toc164353187]Type ‘a’ (or ‘A’), ‘an’ (or ‘An’)
(This macro gets a mention in video: youtu.be/mVBJ1jjQwdk)

By the same token here’s a macro for a/an/A/An.

 Sub TypeA()

[bookmark: _Toc55977375][bookmark: _Toc164353188]Type ‘that’
(Video: https://youtu.be/hqPVJSZsFDk)

For those occasions where your author leaves out ‘that’ a lot of times, just aim the cursor into the word after which ‘that’ needs adding, and run the macro.

Sub TypeThat()

[bookmark: _Toc164353189][bookmark: _Toc55977376]Type ‘the’
(Video: https://youtu.be/hqPVJSZsFDk)

For those occasions where your author leaves out ‘the’ a lot of times, or indeed includes ‘the’ where it’s not needed just aim the cursor somewhere in the word that needs to have ‘the’ in front of it, and run the macro and ‘the’ will be added – but if the words is at the beginning of a sentence, then ‘The’ will be added, and the following word will be down-cased.

Conversely, if ‘The’ starts a sentence and needs removing it, click in it, and the macro will remove it and up-case the following word.

Sub TypeThe()
(Now replaced by ArticleChanger)

[bookmark: _Toc164353190]Add accents to characters
The issue here is when the text you’re given doesn’t have any of the required accents – e.g. ‘garcon’, ‘elan’, ‘a la’ – and it’s not possible to correct all the words by global find and replace. This means that the accents have to be added as you actually read the text. So to enable you to keep your focus on the wording, you want to be able to add accents quickly and easily. OK, so try this.

Here’s your text (please forgive my Google-French!):

	Vous avez un elan tres a la mode. Ou sont les garcons?

So you place the cursor somewhere in front of ‘elan’ and run CharToAcute; the macro moves along the line until it finds the ‘e’ and changes it to ‘é’.

Then put the cursor in front of ‘tres’ and run CharToGrave; in fact, if you run CharToGrave twice – click, click – it does both ‘très’ and ‘à la’. (I’ll come back to ‘Ou’ in a minute.). Then in front of ‘garcons’, and run CharToVariousAccents to get ‘garçons’.

I suggest you use keystrokes that are memorable to you, say Alt-[for acute and Alt-] for grave and maybe Alt-V for CharToVariousAccents. Whatever!

The macros also work with capitals; and CharToVariousAccents does both ‘ç’ and ‘ñ’ and capitals., so it also works for ‘los niños’ for Spanish. Hopefully, you get the idea.

And there’s a macro for umlauts and one for circumflexes.

Now, coming back to ‘Ou’, with the CharToGrave macro as it stands, you would have to put the cursor, exactly between the ‘O’ and the ‘u’, which slows the process down. That’s because the macro is set up to give graves for all five vowels. It uses these lines:

myChars = "aeiouAEIOU"
myAccents = "àèìòùÀÈÌÒÙ"

But for French, you could slim that down (I think!) to:

myChars = "aeuAEU"
myAccents = "àèùÀÈÙ"

Is that right? I don’t think French uses ‘ì’ and ‘ò’, does it?

Anyway, it’s up to you to tailor the macro. The point is, if I reduce myChars and myAccents, as I’ve suggested, I could just point the cursor somewhere in front of ‘Ou’.

Hopefully the macros are simple enough for you to fiddle around with the selection of accents they provide, to suit your own language use. And if there are other accents you want, you can create other macros using exactly the same pattern.

Sub CharToAcute()

Sub CharToGrave()

Sub CharToCircumflex()

Sub CharToUmlaut()

Sub CharToVariousAccents()

[bookmark: _Toc55977377][bookmark: _Toc164353191]Add a macron to the next vowel
(A macro kindly provided by Christopher Goj from New Zealand)

If you are processing Maori texts. you might have trouble with your macrons! The Maori language uses macrons liberally, which usually get lost if the text has been OCRed. So as you read, this ‘macron macro’ will allow you to add a macron to the next vowel.

Sub CharToMacron()

[bookmark: _Toc55977378][bookmark: _Toc164353192]Add (real) bullets to a list

If you want to add real bullets to the items in a list, just click somewhere in the first paragraph and shift-click somewhere in the final paragraph, and the macro will do the rest.

As it stands, the bullet is put into Wingdings 2 font, but If you just want it in the same for, make

funnyFont = ""

and if you prefer a tab after the bullet, there’s an alternative line given in the macro:

mySeparator = Chr(9)

Sub ListBulleter()

[bookmark: _Toc55977379][bookmark: _Toc164353193]Reducing all-capitals to initial cap
If you have a load of headings in ALL CAPITAL LETTERS where you want to selectively reduce the words to Lowercase With Initial Caps, these two macros might speed you up. The first one searches the text for a run of four capital letters, and the second one selects the current word and changes its capitalisation to lowercase with an initial capital, and then it jumps straight to the next run of four capital letters.

What is the logic? Set the first macro to, say, Ctrl-Alt-I (for ‘initial’), and the second one to Alt-I. Then to use the macros, you start with a heading and use Alt-I repeatedly to change each of the words in the title to initial capital. But if it finishes a heading and then the next word it finds is an acronym in the middle of a paragraph (NATO, say), you probably want to leave it in full capitals, so you press Ctrl-Alt-I, which will make no change and simply jump you to the next word in full capitals. So, you hold the Alt and click the <I>, but then hold down Ctrl to indicate ‘don’t change this one – jump to the next’.

Sub InitialNext()

Sub InitialCapOnly()

[bookmark: _Toc55977380][bookmark: _Toc164353194]Lowercase this phrase throughout
You’re working on a big file, and there are lots of Special Phrases where the author has used Unnecessary Initial Uppercase Characters. This macro allows you to select one and, at a click, globally F&R them down to lowercase.

Unnecessary Initial Uppercase Characters do, I realise, sometimes come at the start of a sentence, so the macro has an option to highlight all the changes, so that you can keep an eye out for such an occurrence. However, if you would like me to extend this macro so that it checks whether the phrase is indeed at the start of a sentence and, if so, uppercase the the initial letter, I’ll happily do so – do just ask me.

Sub LowercaseGlobal()

[bookmark: _Toc55977381][bookmark: _Toc164353195]Select current word
(Video: https://youtu.be/hqPVJSZsFDk)

I find this deceptively simple macro very useful. (But it takes ages to explain why!)

Example: The cat ‘sat’ on the mat.

If you double-click the word ‘cat’ in the above, Word selects the word ‘cat’ and the following space (no problem), but if you double-click the word ‘sat’, Word selects the word and the apostrophe and the following space. (Don’t ask me why Microsoft did it that way!)

So, if you just want to select the actual word ‘sat’, click in the word and run the macro (using a keystroke, of course, for speed).

Now, consider the following sentence (which obviously needs editing):

	The cat on the mat sat.

Clearly, you want to select ‘sat’, and move it back between ‘cat’ and ‘on’. To be more precise, you want to select ‘<space>sat’. So, put the cursor in ‘sat’ and click the macro twice: once and it selects ‘sat’, twice and it selects the space as well – somewhat quicker than trying to do it by drag-select with the mouse.

Now, each subsequent time you click the macro, it adds another word to the selection – plus its preceding space. So, as a silly but illustrative example, you could have put the cursor somewhere in ‘mat’, and clicked four times to select ‘<space>on the mat’, and then moved those three words after ‘sat’.

Sub SelectWord()
[bookmark: _Toc164353196]Expand or contract the current selection, start or end
Based on the idea of SelectWord above, I’ve created a set of four macros for manually (i.e. with keystrokes) extending and shrinking the current selection. In turn, the four extend (or contract) the beginning (or end) of the current selection. So, at each macro-run, the selection steps either by a whole word or by one character at a time through the spaces and punctuation.

A set of four macros for manually (i.e. with keystrokes) extending and shrinking the current selection. In trun, the four extend (or contract) the beginning (end) the current selection, stepping at each run of one of the macros by a whole word or character by character through the spaces and punctuation.

[bookmark: _Hlk139383601]SelectionEndExtend – Pushes the end of the selection further out to the right (i.e. extends it)

SelectionEndShrink– Pulls the end of the selection back to the left (i.e. shrinks it)

SelectionStartExtend – Pushes the start of the selection further out to the left (i.e. extends it)

SelectionStartShrink – Pulls the start of the selection back to the right (i.e. shrinks it)

So, in terms of keystrokes, you might use, say keys 2 and 3 on the numeric keypad (i.e. near to your hand on the mouse), then use Ctrl-Alt with 2 and 3 to extend the selection (the most common requirement, probably), with 2 being the beginning (left) and 3 the end (right).

Then for changing your mind and shrinking the selection, you could add the Shift key, so Shift-Ctrl-Alt with 2 and 3 to shrink (contract) the selection.

You need to think out what would work for you, if you fancied trying this.

Sub SelectionStartExtend()

Sub SelectionStartShrink()

Sub SelectionEndExtend()

Sub SelectionEndShrink()

[bookmark: _Toc55977382][bookmark: _Toc164353197]Select current sentence/paragraph/page
The second of these four is the most useful for me. Click somewhere in the sentence, run SelectSentence, and then you can copy/cut/paste/highlight/italicise/etc the sentence. I said ‘paste’ deliberately. For example, if the author has given you an alternative version of a sentence, you can copy the new sentence and then click somewhere in the old sentence, select the sentence with the SelectSentence macro, click Ctrl-V, and the new sentence totally replaces the old one’.

At the request of an editor, I’ve extended the actions of SelectSentence. It first selects the sentence around the cursor, then if you run it again, it adds the sentence to the right to the selection, then the next to the right, etc.

However, if the rightmost sentence is the final sentence in the para, it adds the previous sentence to the selection. And then if that hits the start of the sentence, it then extends the selection into the sentences of the following paragraph.

Then the other two, SelectWord and SelectCurrentPage, do the same for the current word and the current paragraph. OK, you can double-click a word or double-click a paragraph, but some people prefer a keystroke to a mouse click. Also, if you double-click a word that has a curly quote following, the curly close quote also gets selected, but the macro selects just the word.

I’m not sure why one would want to select a page, but someone on the CE-L mailing list wanted one, so you can now, at a keystroke, also select a page.

Sub SelectWord()

Sub SelectSentence()

Sub SelectParagraph()

Sub SelectCurrentPage()

[bookmark: _Toc55977383][bookmark: _Toc164353198]Select whole words
Someone wanted to be able to do a quick rough selection of some words (as indicated earlier in this sentence by the use of grey highlighting), and then run a macro to round the selection to the very beginning of the first word and the end of the final word.

(In case you’re wondering about the two ‘funny’ lines in the middle, you might have noticed that Word’s idea of what constitutes a ‘word’ is a little idiosyncratic. For example, if you double-click on ‘word’ in this sentence, you end up with the selection as indicated by the highlight, but if you double-click on this “word” here, it selects correctly. So the two clever lines, which Howard Silcock told me about, ‘pull back’ the selection past the space and then past the single close quote.)

Sub SelectTheseWords()

[bookmark: _Toc55977384][bookmark: _Toc164353199]Delete this word
(Video: https://youtu.be/hqPVJSZsFDk)

Place the cursor anywhere in a word, and run this macro to delete that word.

However, it’s a bit more intelligent than that! It tries to work out what you think of as the current “word”, not what Word thinks of as a “word”!

It also works with Word’s Dictate facility: it deletes the last word(s) that Dictate just typed in for you, and that you didn’t mean to say!

Sub DeleteOneWord()

[bookmark: _Toc55977385][bookmark: _Toc164353200][bookmark: _Toc55977386]Delete the rest of the sentence
This macro deletes from the end of the current word to the end of the sentence.

N.B. At the request of fiction editors, it also changes the punctuation of quoted text, thus:

“This is a test,” Lisa said. Then she went for a cup of tea.

becomes

“This is a test.” Then she went for a cup of tea.

Sub DeleteRestOfSentence()

[bookmark: _Toc164353201]Delete to the next punctuation mark
This macro deletes from the end of the current word to the next punctuation mark, be it comma, colon, full stop etc.

It can be used to incorporate the functionality of DeleteRestOfSentence, since full stop is equally a punctuation mark.

But what if the rest of the sentence includes comma, say? No problem. Just click the key shortcut twice:

Cursor in ‘sentence’ (simulated by a ‘|’)
	Here is my sample sent|ence, and I want to want to think, whether I can delete all the rest.

One click gives:
	Here is my sample sentence|, whether I can delete all the rest.

The second click gives the desired:
	Here is my sample sentence|.

Sub DeleteToNextPunctuation()

[bookmark: _Toc164353202]Delete the rest of the line
This macro deletes from the beginning of the current word to the end of the line (paragraph).

Sub DeleteRestOfLine()

[bookmark: _Toc164353203]Move final phrase in a sentence back to the cursor position
This was requested by a German editor, but it might possibly be good for English? Possibly?

Two examples:
1) Sie fühlten si|ch wegen des guten Wetters, das in den vergangenen Tagen herrschte, absolut gesund.

has to become:

Sie fühlten sich absolut gesund wegen des guten Wetters, das in den vergangenen Tagen herrschte.

2) Meine Chemie|versuche, als ich noch ein Schuljunge war, der unbedingt den Nobelpreis gewinnen wollte, waren immer nur von mäßigem Erfolg gekrönt.

has to become:

Meine Chemieversuche waren immer nur von mäßigem Erfolg gekrönt, als ich noch ein Schuljunge war, der unbedingt den Nobelpreis gewinnen wollte.

So the macro cuts the final phrase of a sentence (i.e. after the final comma) and pulls it to just after the word in which the cursor is sitting (simulated by the vertical bar in each of the two examples above).

Sub FinalPhraseMoveForward()

[bookmark: _Toc55977387][bookmark: _Toc164353204]Remove final character of a word
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Use this, say, to take the ‘s’ off ‘bugs’, or twice to take the ‘er’ off ‘bother’. This will only remove the final alphabetic character, not the punctuation, so in ‘He caught an insect (bugs) yesterday.’, it will again take the ‘s’ off ‘bugs’.

Sub FinalCharDelete()

[bookmark: _Toc55977388][bookmark: _Toc164353205]Remove punctuation at end of a word
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

[bookmark: _Hlk74560908][bookmark: _Hlk74561173]Use this to delete the comma or quote mark or whatever non-alpha character follows a word. However, if the word also starts with an open quote, it will remove that too. So, in ‘He caught some (other) insects or ‘bugs’ yesterday.’ if you click in ‘other’, it will take both parentheses off, and if in ‘bugs’, it will take the quotes off.

(You can also use it just to remove the final character of a word, e.g. to take off the rogue ‘s’ in ‘insectss’: ‘He caught some (other) insectss or ‘bugs’ yesterday.’

Sub PunctuationOffRight()

[bookmark: _Toc55977389][bookmark: _Toc164353206]Remove quotation marks from both ends of some text
These macros remove the quotation marks (single or double) from the ends of a sentence or paragraph.

Place the cursor somewhere within the text, and the macro searches backwards and removes the open quote, then forwards to find and remove the next close quote.

For double quotes, this is pretty painless. However, a close single quote is, of course, the same as an apostrophe, but the answer is not to just place the cursor anywhere in the text, but to place it in the final word of the text.

Sub QuotesOffBothEndsSingle()

Sub QuotesOffBothEndsDouble()

[bookmark: _Toc55977390][bookmark: _Toc164353207]Remove the punctuation nearest the cursor
This macro will remove the spurious character nearest to the cursor. However, it ignores ordinary parentheses and square brackets, choosing other characters instead. As set, it ignores alpha characters, numeric characters, () and [], but you can adjust these, if you wish:

ignoreThese = ")(][/0123456789"

Sub PunctuationOffNearHere()

[bookmark: _Toc55977391][bookmark: _Toc164353208]Single quotes round a word
Place the cursor anywhere within a word and this macro will add single quotes around that word.

For German users, change to useGermanQuotes = True. That will give you, e.g. ‚quotes‘.

Sub ScareQuoteAdd()

[bookmark: _Toc55977392][bookmark: _Toc164353209]Double quotes to single quotes
Place the cursor somewhere in the text between a pair of double quotes, run the macro, and it changes them to single quotes. (It will beep at you if it can’t find either an open or a close double quote.)

Sub DoubleQuotesSingleTopical()

[bookmark: _Toc55977393][bookmark: _Toc164353210]Single quotes to double quotes
Place the cursor somewhere in the text between a pair of single quotes, run the macro, and it changes them to double quotes. (It will beep at you if it can’t find either an open or a close single quote.)

The macro realises that an apostrophe-s (e.g. ‘the macro’s end’) is not actually a close quote, but what about an s-apostrophe (s’)? That could be the close of the quotation. So if you see an apostrophe-s, all you have to do is select some text (rather than just clicking in the text), and if the selection includes the apostrophe-s, the macro will know to search for the close quote after the end of the selection. Neat?!

Sub SingleQuotesDoubleTopical()

[bookmark: _Toc55977394][bookmark: _Toc164353211]Non-curly quotes
The following two macros will type single and double quotes respectively, at the current cursor position, but without turning curly, i.e. ' and " – might y useful when editing program listings, such as all these macros!

Sub NonCurlyApostrophe()

Sub NonCurlyQuote()

If you also want ‘proper’ single and double primes characters – ′ and ″ – i.e. Unicode numbers 8242 and 8243 – the best way to do that is to assign keystrokes to each of those characters using Insert–>Symbol–>Shortcut Key.

However, you might find that Word tries to be ‘helpful’ and changes the font of the prime to something other than the font of the existing text. If so these macros will type them in your choice of font.

Sub SinglePrime()

Sub DoublePrime()

[bookmark: _Toc55977395][bookmark: _Toc164353212]Typing text into quotes for notes to publisher
(Difficult to know what heading to use!)
(Video: youtu.be/2hrfWRyDx18)

This is where I’m telling the publisher that I need changes making to the various figures, e.g.

4.6 – Change ‘Incident x-ray’ to ‘Incident X-ray’ (×2) .
4.10 – Change ‘100mm’ to ‘100 mm’ (×3) and ‘150mm’ to ‘150 mm’.
4.17 – Change ‘256x256’ to ‘256×256’ and ‘512x512’ to ‘512×512’ and ‘1024x1024’ to ‘1024×1024’.

My typing speed isn’t good, so I type into the quotes the text that needs changing, and then copy it to the ‘to’ text. All very repetitive, so macros can help hugely:

I start with sets of blank lines such as:

4.5 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.
4.10 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.
4.15 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.
4.20 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.

and then copy the whole paragraph for the ‘nearest number’ item (e.g. for 4.17 I’d use 4.15), and use NumberIncrement or NumberDecrement to get the right number.

Then I click MoveToNextQuote and type into the first pair of quotes.

Then QuoteCopier copies that same text into the next pair of quotes, i.e. after the word, ‘to’. And if there are several of these same changes, I click TypeTimesX, which adds the ‘(×2)’, but it moves the cursor back to the number, ready to use NumberIncrement to increase it, if necessary.

Then another click of MoveToNextQuote, and I deal with the next change needed for that figure.

Finally, when there are no more for that figure, I use DeleteSentenceAfterQuote to delete the rest of the sentence.

(If you watch the video, you’ll see how this speeds it all up – it sounds very laborious when you have to explain it like this!)

Sub QuoteCopier()

Sub MoveToNextQuote()

Sub TypeTimesX()

Sub DeleteSentenceAfterQuote()

[bookmark: _Toc55977396][bookmark: _Toc164353213]Transpose (swap) adjacent letters
(Video: youtu.be/P-6VdmT2BbE)
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Place the cursor between the two characters to be transposed and run the macro – you don’t have to select anything.

Sub SwapCharacters()

[bookmark: _Toc164353214][bookmark: _Toc55977397]Transpose the punctuation characters that follow
If you’ve got, say:

[bookmark: _Hlk139453165]“Please follow me”, the waiter said.

and you want to switch the comma and the close quote, it’s fiddly to place the cursor between the two punctuation marks, so this macro allows you to place the cursor somewhere to the left of the marks. It moves the cursor along the line until it finds two non-space, non-alphabetic characters (e.g. ”,), and then swaps them.

Sub SwapPunctuation()

[bookmark: _Toc164353215]Transpose (swap) two previous letters
(Video: youtu.be/P-6VdmT2BbE)

Another macro, a slight variation of the one above, switches the two characters before the cursor. So, to correct ‘Pual’, you would place the cursor after the ‘a’. and it would switch the ‘u’ and the ‘a’. So what’s the point of that?!

It can save hassle in one particular situation. Suppose you have ‘The force at this point, F2 is greater than...’, and you want to add the missing comma after the ‘F2’. The trouble is, if you just type the comma after the subscript ‘2’, you get ‘... point, F2, is ...’. Here it is, a bit bigger... ‘point, F2, is’ i.e. the comma is subscripted too.

So I type the comma one space to the right: ‘... point, F2 ,is ...’, and then run the SwapPreviousCharacters macro.

Sub SwapPreviousCharacters()

[bookmark: _Toc55977398][bookmark: _Toc164353216]Transpose (swap) words
(Video: youtu.be/P-6VdmT2BbE)
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Put the cursor either at the beginning of, or somewhere in middle of, the first word and run the macro.

By the way, it takes account of following punctuation: i.e.:
By the way, it takes account of punctuation following: i.e.:
– see what I mean! :-)

(This latest version doesn’t just swap the words, but it takes the formatting with it, e.g. “Water H2O is.” can be swapped to “Water is H2O.”)

Sub SwapWords()

And while we’re swapping words around, see how long it takes you (using cut-and-paste, select and drag, or by retyping) to change ‘too much effort and time’ into ‘too much time and effort’. Now just place the cursor anywhere in the first word and try using this macro:

Sub SwapThreeWords()

[bookmark: _Toc55977399][bookmark: _Toc164353217]Turn current word into a plural
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This macro looks at the current word word and tries to make a viable plural out of it, i.e. add ‘s’ or ‘es’ or change ‘y’ to ‘ies’.

Sub Pluralise()

[bookmark: _Toc55977400][bookmark: _Toc164353218]Abbreviation swap
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A + https://youtu.be/0-HaDl2uBmQ)

This is for those occasions where the author will insist on writing things like
 a PH (pleckstrin homology) region
when what you want is
 a pleckstrin homology (PH) region
Simply place the cursor in ‘PH’ and run the macro.

It works the other way too: just put the cursor in ‘British’ and run the macro and it will change
 the British Broadcasting Corporation (BBC) challenges ...
into
 the BBC (British Broadcasting Corporation) challenges ...

If you have “pre-edited” documents that use tags of the form:

<termDef>space shuttle main engine</termDef> (<abbrev>SSME</abbrev>)

You’ll be pleased to hear that this macro has an option:

addPreEditCodes = True

This means that, at a stroke, you can change “SSME (space shuttle main engine)” into the form above – well, not with the blue codes, but you could add those after you had finished by using a FRedit list:

<termDef>|^&
</termDef>|^&
<abbrev>|^&
</abbrev>|^&

Sub AbbrSwap()

[bookmark: _Toc55977401][bookmark: _Toc164353219][bookmark: _Hlk92119290]Making common punctuation changes (1)
(Video: https://youtu.be/eSAlHMlRr8A)

After many years of using the punctuation change macros below, I realised that I could probably speed things up. So I “watched myself working” and decided which changes I was doing most frequently. I put all those into one single macro, instead of having to use a whole range of different macros.

I decided that comma <=> full stop was the most common, and then second was colon <=> semicolon, and finally I thought it would be useful to add single <=> double quotes, even though that doesn’t need a case change for the capital letter of the following word.

But also, I remembered that it was a nuisance if the following word was a proper noun, so you didn’t want to lowercase it when switching to comma.

So here’s the logic of this macro:

It looks along the line for the first punctuation mark it can find (unlike the macros below, there’s no need to place the cursor in the word immediately before the punctuation mark). Then the scheme of what it changes to what is as set out in the first line of the macro:

mySwaps = ".|, ,|. ;|: :|; ?|! !|?"

As you can see, I also included ! <=> ?, although I may well not use it.

(What it doesn’t do is dashes, but I’ll look into adding that if someone asks.)

For capitalisation, when the macro changes a punctuation mark that might also need a case change [i.e. ,.;:], it leaves the mark selected, and if you do want to change the capitalisation, then simply run the macro a second time. Seeing that one of these marks [,.;:] is selected, it does the capitalisation change for you.

Because the mark zips along the line to the next mark, for swapping quotation marks, this means that you can probably just press the shortcut key again and again, to do a series of swaps. And there’s no need to jump the cursor past apostrophes because the macro automatically ignores them.

If you’re punctuating dialogue in fiction work and have issues with the quotation marks getting in the way, you can change the second line of the macro to:

doQuoteSwap = False

But I’ve presented that as the second macro below:

Sub PunctuationSwap()

Sub PunctuationSwapInDialogue()
[bookmark: _Toc164353220]Change punctuation between words (2)
(Video: youtu.be/FVt2ggFXf4A and youtu.be/PB0hXA_1tRo)

(Fiction editors might like these macros.)

If you have a break between words using a comma, a colon, a semicolon etc or even a dash (spaced or unspaced), and you want it to be a sentence break, simply place the cursor in the word before the break, and (with my key shortcut) press Ctrl-Alt-<FullStop>. The macro removes the punctuation, adds a full point (period) and, if necessary, changes the first letter of the next word to uppercase.

Similarly, if you want the words to be separated by a comma (or a colon, or a semicolon or a dash, or a question mark or an exclamation mark) use the appropriate macro linked to a suitable keystroke – in my case Ctrl-Alt-, or Ctrl-Alt-: (i.e. Ctrl-Alt-Shift-;) or Ctrl-Alt-; or Ctrl-Alt-= or Ctrl-Alt-? or Ctrl-Alt-!.

It now also copes if there’s an open quote in the way. So it changes

	he said, “you know...

into

	he said. “You know...

or into

	he said: “you know...

or whatever.

And I decided that for some jobs, you might like to follow a colon with an uppercase character, not a lowercase one, so the Colon macro has the option at the beginning: useUppercase = False which you can change to True if you want uppercase.

The only macro that needs any further explanation is the Dash macro, which is currently set up for a spaced en dash. If you want it to give you an unspaced em dash, change the text in the first lines of the macro:

' Spaced en dash
' newBit = " " & ChrW(8211) & " "

' OR Unspaced em dash
newBit = ChrW(8212)

Either that or you can have two separate macros, one for each. I don’t bother as I use unspaced em dashes so rarely.

STOP PRESS: Someone pointed out that it would be helpful if the Comma macro also performed the function of CommaAdd, i.e. if there is no punctuation at all after a word, the Comma now adds a comma.

STOP PRESS 2: And now all the other macros in this set do exactly the same

STOP PRESS 3: Someone pointed out that if you want to change to a comma (or a semicolon or a colon) in, say:

	he said. “Paul knows...

or something like:

	it ends. America now...

then you don’t want to lowercase the next character. Sorted! In such a case, don’t just click in ‘said’ or ‘ends’, but rather double-click it. The macro first then checks to see if any text is selected and, if it is, it does not change the case of the next word.

STOP PRESS 4: Someone wanted FullPoint to also delete a conjunction, i.e. make this change:

	...end of this sentence and the beginning of the next...
into
	...end of this sentence. The beginning of the next...

So with the latest version of FullPoint, if you double-click the conjunction, to select it, the macro will then delete it and then make it a sentence break.

Sub FullPoint()

Sub Period()

Sub Comma()

Sub Semicolon()

Sub Colon()

Sub Dash()

Sub EmDashUnspaced()

Sub QuestionMark()

Sub ExclamationMark()

[bookmark: _Toc55977402][bookmark: _Toc164353221]Change punctuation between words in dialogue
(Video: youtu.be/PB0hXA_1tRo)

(Fiction editors might like this macro.)
You might want to change the punctuation between words, as above, but in a dialogue, so you want to preserve the quotation mark:

“Blah, blah.” He said.

to

“Blah, blah,” he said.

In which case the following pair of macros will give you the full point (period) and the comma.

These macros have one extra feature over the previous set of macros. If you just put the cursor somewhere in the word before the punctuation mark, then they work as normal, changing the punctuation mark and, if necessary, correcting the case of the initial letter of the following word. However, if you actually select some or all of the previous word (e.g. just double-click it), it does not change the case of the following word. This would be useful for, say:

“Blah, blah.” John said.

if you want to change to a comma.

If you also want macros for exclamation mark and question mark, just create a new macro based on FullPointInDialogue and change the line newBit = ". " to newBit = "! " or "? ".

If you also want macros for colon, and semicolon, just create a new macro based on CommaInDialogue and change the line newBit = ", " to newBit = ": " or "; ".

Sub FullPointInDialogue()

Sub CommaInDialogue()

[bookmark: _Toc55977403][bookmark: _Toc164353222]Changes proper noun to personal pronoun
(Video: youtu.be/PB0hXA_1tRo)

This macro changes proper nouns to a personal pronouns (John −> he, Jane −> she), but it is used selectively. When you run it, it looks along the line to find the next proper noun, deletes it and types ‘she’. But if you then type Ctrl-Z, it changes to ‘he’.

That’s the way it works if the macro is set to sheHasPriority = True, but if you change that to False then it types ‘he’, and if you do a Ctrl-Z, it turns to ‘she’.

This is nothing to do with sexism; if your story has mainly male characters or mainly female characters, you can decide which way round you want to work it: ‘he’ or ‘she’ first.

Sub ProperToPronoun()

[bookmark: _Toc55977404][bookmark: _Toc164353223]Numbers (figures) to text
(Video: youtu.be/FVt2ggFXf4A)

If your text occasionally uses numerals 1 to 9 instead of words ‘one’ to ‘nine’ (or ‘57’ for ‘fifty-seven’, for that matter!), just place the cursor somewhere on the line in front of one of these rogue numerals and run the macro. Each time you run it, it jumps to the next group of numerals and changes the number to text, so – click, click, click, and three consecutive numbers are changed into text, just like that!

N.B. If you use this for three-digit numbers or more, note that it uses US wording, so ‘385’ becomes ‘three hundred eighty-five’, and not ‘three hundred and eighty-five’. (But there’s a UK version below.)

And there’s a version that some of the US folks wanted, which takes account of spaces, commas and hard spaces being in the number – e.g. it will correctly change 23,456 or 45 678 into words.

[bookmark: _Toc55981634][bookmark: _Toc55981732]Basic version

Sub NumberToText()

[bookmark: _Toc55981635][bookmark: _Toc55981733]Version that copes with commas and spaces

Sub NumberToText2()

The versions above are the US-based macro, in that for ‘123456’ you get ‘one hundred twenty-three thousand four hundred fifty-six’, and not ‘one hundred and twenty-three thousand, four hundred and fifty-six’ (i.e. it doesn’t give you the ‘and’s or the comma).

So the two macros below are UK versions.

Sub NumberToTextUK()

Sub NumberToTextUK2()

CMOS doesn’t like “one thousand four hundred”, but rather “fourteen hundred”. This version does that.

Sub NumberToTextCMOS()

There is now a German equivalent. It is a simple macro that will work only for the numbers 1 to 12, but you can probably work out how to make it work for bigger numbers, although the job is a bit laborious, depending how far you want to go. (The other macro, remember, work for up to 6 digit numbers.)

Sub ZifferWort()

The above macro is now redundant! I suddenly realised that I could use MultiSwitch to determine whether 1, 2, 3 etc were changed to one, two, three etc, or eins, zwei, drei, etc or un, deux, trois, etc. So the new macro looks along the
line until finds a one- or two-digit number, and then jumps into MultiSwitch.

So in your zzSwitchList you add a list of numbers:

1
eins

2
zwei

3
drei

4
vier

5
fünf

etc.

or maybe
1
un

2
deux

3
trois

4
quatre

etc

And all it would take to change languages would be to move one of these strings of alternates up to the top of your zzSwitchList.

Sub NumberToTextMultiSwitch()

[bookmark: _Toc55977405][bookmark: _Toc164353224]Convert numbers (text) to figures (1–10)
This is for number ‘one’ to ‘nine’ (or optionally ‘ten’) to figures ‘1’ to ‘9’ (or ‘10’). It searches through the text until it finds the number and types it as a figure instead. (Use Ctrl-Z if you change your mind.)

Sub NumberToFigure()

[bookmark: _Toc55977406][bookmark: _Toc164353225]Convert the next number (text) to figures (1–999)
This looks along the line for the next word that looks like part of a number and converts it to figures.

Sub TextToNumber()

[bookmark: _Toc55977407][bookmark: _Toc164353226]Adjust numbering – increment and decrement
(Video: youtu.be/AYgsFmFA7gU)

I had a 100,000-word book with 500 notes, and the notes were hard-wired, i.e. not automatically numbered. At the last minute, the author said, ‘Can you just [just?!] delete notes 24 and 29, please?’

Fun, eh?! No worries I wrote on paper what changes were needed:

1−>23 OK
delete note 24
25 −> 28 decrease by 1
delete note 29
30 −> decrease by 2

I have the two macros below (I put them on F2 and F3); each jumps forwards along the line to the next number and increments (or decrements) it. So if I see 26 coming up, I click F2 once, and that makes it 25, but if it’s 32, I click F2 twice, and it becomes 30.

They also work with dates: click in 1978 and click F3 and it becomes 1979.

In fact, it works from the cursor onwards, so if I’ve got a ‘funny’ number like ‘0084’, if I put the cursor just before the ‘8’, and click F3, I get ‘0085’. But if I just clicked anywhere in front of it, the ‘0084’ would become just ‘85’.

Also, if you just have a numbered list:

1) Blah one
2) Blah again
3) Blah another
4) Blah last
5) Blah-de-blah

and you need to add or remove an item and hence have to do some renumbering, then these macros will speed up the renumbering.

But then maybe you’re correcting numbers which need a bigger jump. No worries. At the beginning of the NumberIncrement (NumberDecrement) macro is a line saying:

jump = 1

(jump = -1)

If you need to change by 4, say, then you can change it to 4 (−4).

[bookmark: _Hlk120260718]Suppose you need to renumber figure numbers, or equation numbers, say in chapter 14. OK, then search for ‘14.’ so that you can then alternately run FindFwd (which jumps forward to the next find, i.e. the next ‘14.’) and then press F3 (assuming it’s an increment you want).

However, if you have a lot of these to do (and this feature was added when I found a pair of repeated equation numbers near the beginning of a chapter of over 100 equations plus 60+ citations!), you can change a line at the beginning of the macro that currently says:

goNext = False

from False to True. Then every time you press F3, it increments the number and jumps to the next find.

The downside of this is that you’ll forget to change it back to False, when you finish. Then, next time you try to use the NumberIncrement macro, the number is decremented, but the cursor flies off to somewhere else in the text!

If your memory is bad, like mine, you could instead create a macro:

Sub IncJump()
 Call NumberIncrement
 Call FindFwd
End Sub

Sub NumberIncrement()

Sub NumberDecrement()

[bookmark: _Toc55977408][bookmark: _Toc164353227]Adjust lettering – increment and decrement
Extending the idea of the previous macro, if you had a lettered list:

a) Blah one
b) Blah again
d) Blah another
e) Blah last
f) Blah-de-blah

and you wanted to add an extra item after (a), you’d need to ‘renumber’ (b) to (e). Put the cursor in front of each in turn and run LetterIncrement. (Similarly if you want to delete an item.)

Another use: If you have a Greek letter, and you want to change it, you can use these two macros to move up and down through the alphabet, rather than re-entering the Greek characters from scratch. (It only works if you know your Greek alphabet, of course!)

Sub LetterIncrement()

Sub LetterDecrement()

[bookmark: _Toc55977409][bookmark: _Toc164353228]Change ampersand to and
Following the same sort of theme as converting numbers to text, if you see an ampersand (‘&’) coming up, just run this macro and it will jump to the ‘&’ and change it to ‘and’. My keystroke for this is easy to remember: Ctrl-Alt-Shift-&.

(This facility is also covered by CharacterSwitch, but the advantage of having a separate macro is that the cursor can be placed in any word in front of the symbol. For CharacterSwitch, you have to place the cursor exactly in front of the symbol.)

Sub Ampersand()

[bookmark: _Toc55977410][bookmark: _Toc164353229]Change percent symbol to words
In exactly the same vein, if you see a percent symbol (‘%’) coming up, just run this macro and it will jump to the ‘%’ and change it to ‘ per cent’. My keystroke for this is yes, you’ve guessed it: Ctrl-Alt-Shift-%.

And, of course, if you’re working on a US-spelling document, rather than UK one, it uses ‘percent’ rather than ‘per cent’.

(This facility is also covered by CharacterSwitch, but the advantage of having a separate macro is that the cursor can be placed in any word in front of the symbol. For CharacterSwitch, you have to place the cursor exactly in front of the symbol.)

Sub PerCent()

[bookmark: _Toc55977412][bookmark: _Toc164353230]Change ‘to do’ into ‘for doing’ – and vice versa
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)
(This macro also(!) gets a mention in video: youtu.be/mVBJ1jjQwdk and https://youtu.be/v3pievIohh4)

Yesterday it was a Spanish author, and today it’s Chinese, and on both of them, I was for ever having to change, say, ‘to place’ or ‘places’ into ‘for placing’, or ‘for picking’ or ‘to pick’, so this now automated to an extent.

1) Click in the verb, and it will do its best to switch between do/doing, changing/change, etc.

2) Click in the preposition, and of/for will be changed to ‘to’. If it’s ‘to’ the if you double-click it before running the macro, you’ll get ‘for’, but if it’s not selected, you’ll get ‘of’.

It will cope with some words with nn, rr, ll, tt, pp, but don’t expect it to handle hop/hope/hoping/hopping!

Sub VerbChanger()

[bookmark: _Toc164353231][bookmark: _Toc55977413]Change ‘filling’ into ‘filled’ – and vice versa
This is similar to the previous macro, but it tries to convert between present and past participles – not an easy task in English as there are so many different ways of doing it, spelling-wise. If you use it, you’ll get used to what works and what doesn’t, hopefully. Plus you can actually add to the list of spelling variants listed in the macros.

Click in the participle, and it will do its best to switch to the alternate participle.

The list of changes looks like this, and you can perhaps add to it:

 Case "ed": Selection.TypeText "ing"
 Case "lt": Selection.TypeText "lling"
 Case "nt": Selection.TypeText "ning"
 Case "an": Selection.TypeText "inning"
 Case "un": Selection.TypeText "inning"

Thinking about it, I’m wondering if there are just too many words it will get wrong, but have a play and let me know what you think!

On the upside, when it has made its attempt to change the participle it spellchecks the result and beeps if it has created a spelling error.

Sub ParticipleChanger()

[bookmark: _Toc164353232]Change future tense into present perfect (Dutch)
(Video: https://youtu.be/L3wBj6PcTZs)

This macro was requested by Dutch colleagues, who wanted to be able to change the future tense to the present perfect.

I don’t speak Dutch (despite having visited the Netherlands 20+ times in the past 30 years) but my colleagues gave me a list of words that had to be changed and I delivered two macros: one works just in the current sentence (just click somewhere within the sentence) and the other goes through the whole document.

It works with two verbs, worden and zijn. Here are some examples:

Verb = worden
Before: Het uiteindelijke rapport zal in papier overhandigd worden aan de opdrachtgevers.
After: Het uiteindelijke rapport wordt in papier overhandigd aan de opdrachtgevers.

Before: Dan zal er informatie worden verworven.
After: Dan wordt er informatie verworven.

Before: Daarnaast zullen door middel van deze interviews de visies van de (expert)wijkagenten ten aanzien van bestuursrechtelijke maatregelen in kaart gebracht worden.
After: Daarnaast worden door middel van deze interviews de visie van de (expert)wijkagenten ten aanzien van bestuursrechtelijke maatregelen in kaart gebracht.

Verb = zijn
Before: Indien de burger namelijk last heeft van bepaalde (criminele) gedragingen door bijvoorbeeld overlast, zal de drempel om dit te melden bij de wijkagent lager zijn in het geval van een goede vertrouwensband tussen burger en wijkagent.
After: Indien de burger namelijk last heeft van bepaalde (criminele) gedragingen door bijvoorbeeld overlast, is de drempel om dit te melden bij de wijkagent lager in het geval van een goede vertrouwensband tussen burger en wijkagent.

Before: Wanneer de resultaten zullen zijn verworven.
After: Wanneer de resultaten zijn verworven.

Sub VerbChangerNL()

Sub VerbChangerNLglobal()

[bookmark: _Toc55977414][bookmark: _Toc164353233]Single/double curly quote
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

I’ve revamped the SingleQuote (and DoubleQuote) macro so that you can use the same macro to change any old quotation mark into a single (double) curly quote.

So, SingleQuote now looks along the line from the cursor to the first quote it can find and turns it into a curly single quote. When I say ‘quote’, it can be single, double, open or closed, curly or non-curly, or even the funny German(?) open quotes ‘„’ and ‘‚’ (it might look like a comma, but it’s not, honest!) or the French «, », ‹ and ›. However, it checks the context to work out whether it should replace it with an open or a closed quote.

So, if there’s more than one consecutive quote that needs to become single and curly, it’s just click, click, click (however many there are).

And similarly, obviously, for double quote. So all you have to remember is, say, Ctrl-Alt-Shift-' forces the next quote along the line to a single, and Ctrl-Alt-Shift-" forces the upcoming quote to a double quote.

But the DoubleQuote has another trick up its sleeve: it checks to see whether the ‘quote’ that it has found is in fact an apostrophe, in which case it ignores it and moves on to find the next quote mark. So, if you have

	‘OK, I’m ready if you’re ready.’

it would, after just two clicks of the macro, become

	“OK, I’m ready if you’re ready.”

because it skips past the two apostrophes.

Sub PunctuationToSingleQuote()

Sub PunctuationToDoubleQuote()

[bookmark: _Toc164353234][bookmark: _Toc55977415]Apostrophe
This is for things like ’phone and ’80s.

Sub PunctuationToApostrophe()

[bookmark: _Toc164353235]Switch UK curly quotes on and off
If you sometimes need to have curly quotes on, and sometimes prefer to use non-curly quotes, this macros switches the facility on and off.

Sub CurlyQuotesToggle()

[bookmark: _Toc55977416][bookmark: _Toc164353236]Single/double curly German-style quote
(Video: https://youtu.be/L3wBj6PcTZs)

As the title says! i.e. „Hello there!“ and ‚Hello there!‘

(I’ve tried to get the correct open/close quote in a range of different punctuation situations, but if it puts in the wrong sense of quotation mark, or if it beeps at you and does nothing, please send me a sample of text where it goes wrong. Thanks.)

Sub PunctuationToDoubleQuoteDE()

Sub PunctuationToSingleQuoteDE()

[bookmark: _Toc55977417][bookmark: _Toc164353237]Single/double curly French-style quote
(Video: https://youtu.be/L3wBj6PcTZs)

As the title says! i.e. «Hello there!» and ‹Hello there!›

(I’ve tried to get the correct open/close quote in a range of different punctuation situations, but if it puts in the wrong sense of quotation mark, or if it beeps at you and does nothing, please send me a sample of text where it goes wrong. Thanks.)

Sub PunctuationToDoubleQuoteFR()

Sub PunctuationToSingleQuoteFR()

Or you might prefer to have separate specific macros for the open and close for each of single and double quotes.

Sub PunctuationToDoubleOpenGuillemet()

Sub PunctuationToDoubleCloseGuillemet()

Sub PunctuationToSingleOpenGuillemet()

Sub PunctuationToSingleCloseGuillemet()

[bookmark: _Toc55977418][bookmark: _Toc164353238]Single/double prime
Ditto for single (double) prime.

Sub PunctuationToSinglePrime()

PunctuationToDoublePrime()

[bookmark: _Toc55977419][bookmark: _Toc164353239][bookmark: _Toc55977420]Letter ‘x’ to times/multiply character
Ditto for multiply character.

Sub PunctuationToMultiplySign()

[bookmark: _Toc164353240]Next space to hard (non-breaking/fixed) space
Ditto for hard (non-breaking/fixed) space.

Sub PunctuationToHardSpace()

[bookmark: _Toc164353241]Change double quotes to guillemets
This provides a global change for double quotes to guillemets. Although the macro just consists of four F&Rs (open/close double quotes with and without a rogue space), you can’t just put them in a FRedit list because the auto smart quotes has to be off, or it won’t work. However, if you want this in a FRedit list, you can just use:

DoMacro|QuotesToGuillemets

Sub QuotesToGuillemets()

[bookmark: _Toc164353242]Add quotes to a phrase
(These macros get a mention in video: https://youtu.be/_ijsRqUR1fE + https://youtu.be/0-HaDl2uBmQ)

To add quotes to a phrase, click somewhere in the first word, shift-click somewhere in the final word, and run the macro. It will find the beginning of the first word, add the open quote, find the final word, sort out if the final character is a space and type in the close quote accordingly. To add quotes round a word, just click somewhere in the word.

Sub QuotesAddDouble()

Sub QuotesAddSingle()

[bookmark: _Toc55977421][bookmark: _Toc164353243]Add parentheses round the current word/phrase
(This macro gets a mention in video: https://youtu.be/_ijsRqUR1fE + https://youtu.be/0-HaDl2uBmQ)

This macro adds parentheses round the current word or phrase. Just click somewhere in the word and run the macro. Or for a phrase, select roughly from somewhere in the first word to somewhere in the final word, e.g. “I want to parenthesise this phrase, please.” would give: “I want to (parenthesise this phrase), please.”

You could make customised versions of this macro (N.B. with (slightly) different names) by changing the two lines:

Selection.TypeText Text:=")"

and

Selection.TypeText Text:="("

So you could add, instead, say angle brackets ">" and "<". (Note that it types in the close item first, then the open item.) You could even add, say, tags "<\code>" and "<code>".

Sub ParenthesesAdd()

[bookmark: _Toc55977422][bookmark: _Toc164353244]Add ‘things’ round the current word/phrase
This is an expanded version of the previous macro: not only does it add your specified punctuation/tags etc, but it can also delete specified punctuation that might already be there. It’s up to you to decide exactly which punctuation marks you want deleting, and obviously, you can make multiple copies of the macro (N.B. with (slightly) different names), each set up so that it adds different ‘things’ rounds the text and deletes a different set of punctuation marks (or not).

This is set up with:

deleteThese = "()[].,"
' And the various quotation marks
deleteThese = deleteThese & """'" & ChrW(8220) & ChrW(8221) & ChrW(8216) & ChrW(8217)

Just click somewhere in the word and run the macro. Or for a phrase, select roughly from somewhere in the first word to somewhere in the final word, e.g. “I want to parenthesise this phrase, please.” would give: “I want to (parenthesise this phrase), please.”

Sub AddTextRoundText()

[bookmark: _Toc55977423][bookmark: _Toc164353245]Delete pairs of parentheses, quote marks or commas
[bookmark: _Hlk66204374](This macro gets a mention in video: https://youtu.be/0-HaDl2uBmQ)

This macro was born when I had a document with lots of pairs of parentheses that I had to delete, but it has grown into a macro that can delete pairs of all sorts of characters. Specifically, it looks for and deletes [], {}, <>, (), “”, ‘’ or even pairs of parenthetical commas!

So how does the macro know what to look for? For a start you give it a clue what to do by placing the cursor a few characters in front of the first of the pair (where ‘few’ is defined by numChars = 20 at the beginning of the macro). The macro looks for the above special characters in the order specified in the macro (which you can change, if you wish). So if it can’t find [, it looks for {, then for <, etc.

This is useful because, if you have a lot of pairs to delete, you can probably arrange things so that you can just keep running macro by clicking the keystroke, without having to reposition the cursor. So, for example, I’ve placed the comma at the end of the priority list so that if the text has, say, parentheses in it, it will delete those, rather than the commas. For some applications, you might need to extend the ‘range’ of the macro by setting, say, numChars = 50 or whatever.

If it can’t find a matching pair for the open-whatever-character it’s looking for, it beeps at you. The range over which it looks for the match is set by numWords = 50 at the beginning of the macro.

Sub ParenthesesEtcPairDelete()

[bookmark: _Toc55977424][bookmark: _Toc164353246]Change quotes on a phrase – double to single
This macro allows you to choose a specific phrase, and changes the curly quotes on this phrase from double to single.

Sub DoubleQuotesToSingle()

[bookmark: _Toc55977425][bookmark: _Toc164353247]Add a comma
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)
(Video of CommaAddPrevious: youtu.be/AqREu_iJ2Yg)

As I often find myself adding commas, I have a macro so that I just put the cursor somewhere in the word and run the macro. This then jumps to the end of the word and adds said comma.

I’ve recently made it a bit more intelligent. If the word is in italic or bold, it types in the comma but then checks the following word to see if it too is in italic/bold. If it’s not then it goes back and makes the comma roman.

(That said, working for a client in Spain, their convention was that the punctuation should keep the same format as the word it follows, as I’ve just illustrated. So I’ve added an option at the beginning of the macro.)

Sub CommaAdd()

Someone asked if it would be possible to add a comma outside the close quote marks on UK files and inside the quote marks on US files. Here it is:

Sub CommaAddUSUK()

And this version is useful if you’re doing something like finding all the ‘and’s and checking to see if you ought to add a comma before it. So search for ‘and’ and the next, and the next. Then, if one of them needs a comma adding before it, just run this macro instead of having to move back a word and then using the ordinary CommAdd.

Sub CommaAddPrevious()

[bookmark: _Toc55977427][bookmark: _Toc164353248]Hyphen to dash
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

This assumes that two words (or numbers) have a hyphen between them, and it should be a dash, e.g. ‘take the London-Manchester road’ or ‘in 30-60 minutes’ time’. Just put the cursor in the word before it, and run the macro.

The macro is currently set for an en dash, but if you want in em dash, you use the other macro.

Or if it just says ‘take the London Manchester road’, as long as you place the cursor in ‘London’, it will find the next space and make that a dash.

(PPS: I’ve also now added a space into the search pattern, so one press and you get an em dash between the two words, and two presses and it’s an en dash – or vice versa if you change the priority at the beginning of the macro. Then then third press will give you a hyphen, although PunctuationToHyphen goes straight to a hyphen.)

Sub PunctuationToEmDash()

Sub PunctuationToEnDash()

And for a non-breaking dash (em or en)...

Sub PunctuationToNonBreakingEmDash()

Sub PunctuationToNonBreakingEnDash()

[bookmark: _Toc55977428][bookmark: _Toc164353249][bookmark: _Toc55977429]Punctuation to comma

Similar to the macro above but it changes the next punctuation mark to a comma.

Sub PunctuationToComma()

[bookmark: _Toc164353250]Punctuation to full point (period)

Similar to the macro above but it changes the next punctuation mark to a full point (period).

Sub PunctuationToFullPoint()

[bookmark: _Toc164353251]Hyphen to minus sign
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Similar to the macro above but it changes the next ‘hyphen-like character’ to a proper Unicode minus sign.

Sub PunctuationToMinus()

[bookmark: _Toc164353252]Hyphen/dash/hard space to space
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

This is used where two words (or numbers) have a hyphen/dash/hard space between them, and it should be a space, e.g. ‘a finely-tuned argument’. Just put the cursor somewhere before it, on that line, and run the macro.

Sub PunctuationToSpace()

[bookmark: _Toc55977430][bookmark: _Toc164353253]Dash or (hard) space to hyphen
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This is used where two words (or numbers) have a dash/hard space/space between them, and it should be a hyphen, e.g. ‘a well tuned viola’. Just put the cursor somewhere in ‘well’, and run the macro.

Sub PunctuationToHyphen()

[bookmark: _Toc55977431][bookmark: _Toc164353254][bookmark: _Toc55977432]Punctuation to hard space
This jumps to the next space, hyphen, dash etc and turns it into a hard (non-breaking) space. One options is whether to track the change or not:

trackIt = False

Sub PunctuationToHardSpace()

[bookmark: _Toc164353255]Punctuation to thin space
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

This jumps to the next space, hyphen, dash etc and turns it into a thin space. Three options are (a) whether to track the change and (b) whether to highlight the space in light grey, and (c) whether to ensure that the space is not super or subscript.

trackIt = False
makeItGrey = True
makeNotSubSuper = True

Sub PunctuationToThinSpace()

[bookmark: _Toc164353256]Type a thin space
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

A companion to the previous macro, this, er, types a thin space at the cursor – but it has the same three options.

Sub TypeThinSpace()

[bookmark: _Toc55977433][bookmark: _Toc164353257]Delete next punctuation mark
On a job I did recently the references lists have loads of excess punctuation, so I decided that it would be useful to have a macro that runs along the line to the next punctuation mark and deletes it.

So that’s for just deleting a punctuation mark, but I can then, of course, type in a replacement punctuation mark if necessary.

For me, this means that I don’t have to use the mouse to do the intricate selection of one tiny punctuation mark. Anyone suffering RSI from excess mousing will understand why I prefer instead to use just one easy keystroke (I use Alt-Backspace).

Sub PunctuationOff()

[bookmark: _Toc55977434][bookmark: _Toc164353258]Punctuation inversion
If you often find yourself switching, say ‘.)’ into ‘).’ or perhaps ‘,'’ into ‘',’ then this will save you time. It searches from the cursor onwards to find any pair of punctuation marks from a whole list (currently it’s: ;:.,!? ’ ‘ “ ” ' ")(][}{, but you can add others) and then inverts the order. That’s all there is to it.

Sub PunctuationSwitcher()

[bookmark: _Toc55977435][bookmark: _Toc164353259]Join two words
If you have two words that are hyphenated or just have a space between them, and you want it to be a single word, then place the cursor in the first word, and this macro will do it for you – e.g. to change ‘on-going’ or ‘on going’ into ‘ongoing’.

It has two options.

1) If it feels more intuitive to you to put the cursor in the second word, ‘going’, and ‘push this word backwards’ into the previous one, then use: joinToPrevious = False.

2) German users may also like to lowercase the initial letter of the second word. If so, set: forceLowercase = True.

Sub JoinTwoWords()

[bookmark: _Toc55977436][bookmark: _Toc164353260]Word pair (un)hyphenated or single word
This macro takes a word pair that is either two words or hyphenated, and cycles through: two words −> hyphenated −> one word −> two words etc. Each time you run the macro, it takes one step through the cycle – but it can’t, of course, start from a single word as it wouldn’t know where to split it!

If you’d prefer it to cycle the opposite way around: hyphenated −> two words −> one word −> hyphenated etc, it has an option at the beginning of the macro: reverseOrder = True.

Sub WordPairPunctuate()

[bookmark: _Toc55977437][bookmark: _Toc164353261]Change or add ‘that’ and ‘which’
(N.B. the following macro makes this one redundant – it does what this does, and a lot more.)

How many times a day do I add ‘that’ into a sentence to aid its understandability?! Now all I do is place the cursor in the middle of the previous word and press (in my case) Ctrl-Alt-t. However, this macro is rather more intelligent than that.

(a) If (as per the previous paragraph) it finds itself in the middle of a word that is not ‘that’ and not ‘which’ then it adds ‘that’ after the current word.
(b) If it finds itself in the middle of the word ‘which’, it deletes it and replaces it with ‘that’.
(c) If it finds itself in the middle of the word ‘that’, it deletes it and replaces it with ‘which’.

If, out of habit, you find that you have already double-clicked on your ‘that’ or ‘which’, ready to replace it, don’t worry, just run the macro, and it will perform as specified above.

Sub ThatWhich()

[bookmark: _Toc441501553][bookmark: _Toc55977438][bookmark: _Toc164353262]Common word/phrase switch
New intro video: https://youtu.be/v3pievIohh4
Main video: youtu.be/NuwIVuJwW1g, Hints & Tips: https://youtu.be/K7xfLbh26oE
This macro gets a mention in video: youtu.be/FVt2ggFXf4A

(Late addition to the macro: suppose you want to change the item in the list which you’ve just searched for. You will find that the macro has loaded Word’s search function with that word/phrase, so you can use Word’s Find function – or the FindFwd macro – to jump to that word/phrase in the list.)

(N.B. Please read right through these instructions, because the macro has a huge range of different facilities bundled into it, and I wouldn’t want you to miss its full potential – the video only shows the basic use of the macro.)

MultiSwitch can be thought of as a selective version of FRedit, i.e. you have a list of pairs of words/phrases, where you want the first to be changed to the second, but not globally: it only changes the text at the cursor. Run MultiSwitch once to make one change. Run the macro again, somewhere, to make another change.

As with FRedit, you have to have a list open when you run the macro. If not, it will prompt you to open it.

If it’s a pain having to remember to load it, then you can add a line at the beginning of the macro to load it for you automatically, something like this:

Documents.Open FileName:= "C:\Documents and Settings\Paul\My Documents\zzSwitchList.docx"

or on a Mac:

Documents.Open FileName:= "/Users/Paul/My Documents/Macro stuff/zzSwitchList.docx"

The address in each case has, of course, to be the address where you have stored your zzSwitchList.

Here’s an example list (I call it the switch list), but the macro itself contains no data – you are the person who sets what is to be changed into what:

that
which

which
that

like
such as

Like
As with

Due to
Owing to

as a result
because

at this point in time
now

England
the UK

Holland
the Netherlands

continuously
continually

continually
continuously

in conjunction with
with

Since
Because

Therefore
So

dimorphic-tribenzene
dimorfic tri-benzene

dt
dimorfic tri-benzene

precholier
préchôlièr

etc, etc.

You are reading through your text and you decide that a change is needed, so you simply place the cursor somewhere in that word (or in the first word, if it’s a phrase) and run the macro. It looks through your switch list, finds the given word/phrase, and changes it into the alternate word/phrase.

(For me, part of the value of this macro is that, while it is making that change, my concentration remains on the meaning and flow of the sentence. Looked at it the other way round, if I were making the change by hand, while still thinking of the meaning of the sentence, I might well mistype the alternate text.)

The final three items in the above list are spoof entries, just to show that it can be useful for (a) scientific and/or foreign language applications and (b) as an abbreviation expander and (c) applying accents.

The macro also has the facility (should you want it) to offer a group of alternative replacement texts. So, you might have an entry in the list, say:

as a result of
due to
owing to
because of

So, if you click in the text on the ‘as’ of ‘as a result of’, the macro offers you an on-screen menu:

1: due to
2: owing to
3: because of

and you can type in the number of the item you want. (One application of this is where the client wants you to avoid certain ‘stock phrases’, but then again, you don’t want to replace it with the same alternative wording every single time.)

Then suppose you’ve got an item:

last
past
final
previous

If you use this, you will see that the default value that the macro gives you is ‘1’. So running the macro and then just pressing Enter will give you ‘past’. The macro is also set up so that if you double-click on ‘last’ before running the macro, it doesn’t even bother displaying the menu at all but simply uses the first of the alternatives – past.

Formatting: MultiSwitch also allows you to include formatting. (And I typed that sentence by doing an ‘m’, and running MultiSwitch.) The word comes out in italic because my list contains:

m
MultiSwitch

So all I did above was type an m, and ran the macro. If any item of alternate text that has, in the MultiSwitch list, some sort of formatting, then the change will be made to the text, but the formatting will be brought through too.

(Useful hint: in the list, after the italic ‘MultiSwitch’ I’ve put a roman space. This means that after typing ‘m’ and running MultiSwitch, I can carry on typing, and succeeding text will come out in roman, not italic.

Here’s another example.

46
46 Nightingale Drive, NR8 6TR
46 Nightingale Drive^pNorwich NR8 6TR
46 Nightingale Drive,^pNorwich^pNR8 6TR^p

so if I type just ‘46’, and run the macro, I can have any of the three formats:

46 Nightingale Drive, NR8 6TR

46 Nightingale Drive
Norwich NR8 6TR

46 Nightingale Drive
Norwich
NR8 6TR

Option 1 is straightforward. In option 2, you can see that I’ve used ‘^p’ to generate a new line (and you can use ^t for a tab).

In option 3, the postcode is in bold (and a different font). The point is that when the replace item has certain formatting, the macro copies the text out of your list, so the replacement text can have any formatting/styles you like.

For example, you could use it for things like:

[bookmark: _Hlk40957040]H2O
H2O

CO2
CO2

and it would be sensible to have two forms of each, in case you’re typing...

h2o
H2O

co2
CO2

Then you don’t have to do capital-H, capital-O, etc.

Another way to handle a number of alternates for the same word/phrase is to put them in sequence:

so
therefore

therefore
thus

thus
hence

hence
so

so you can cycle through them by, in my case, repeatedly clicking Ctrl-Q.

In jobs where you’re using track changes, there might be some specific changes that you don’t want tracked. So, as with FRedit and others of my macros, if you apply a single strikethrough to the alternate text, the macro knows not to track it.

Fig.
Figure

I used this one, because I didn’t want ‘Fig. 3.2 shows blah...’ at the beginning of a sentence, but I didn’t want to track the change.

Another feature is that if you’ve got things like ‘degrees’, ‘per cent’ etc, the macro can delete the preceding space. So, for example, ‘10 degrees’ needs to become ‘10°’ and not ‘10 °’. You do this by adding an exclamation mark:

degrees
!°

percent
!%

per cent
!%

per annum
!/year

If the macro can’t find an alternate in your list, it beeps at you to indicate that the particular word/phrase is not actually in your list.

General hint: I find it best to keep my alternates list in at least vaguely alphabetic order. That way I can keep track more easily of the different words I’ve got in there. That said, I do tend to add temporasry items – for specific jobs – at the top of the list.

But after you’ve run MultiSwitch, the cursor is left at the point in the list where it found the alternate. This means that it’s easy to make changes to the items in the list while you think about it.

[bookmark: _Toc55981637][bookmark: _Toc55981735]Practicalities – changing the cursor position
If you want to use MultiSwitch for expanding abbreviations, presumably you’ll want to carry on typing after the expansion, so you will want the macro to leave the cursor after the typed-in text. So for abbreviations, can just add a tilde at the end:

usa
United States of America~

You type ‘usa’, press Ctrl-Q and then just keep typing.

However, I have also made it so that if the Find word is only either one or two characters, it automatically makes the assumption that it’s an abbreviation anyway and so it puts the cursor after the replacement text. So I use things like:

au
automatically

b
because

bt
By the way,

and they don’t need tildes.

And going back to the use of the tilde, note that you can put the tilde anywhere in the text, e.g.

pay
Please pay £~ into my account: 76-88-01 567892660.

In this case, if I type ‘pay’, the macro types out this line of text, and the cursor ends up immediately after the pound sign, ready for me to type in the amount.

There’s also an option:

 includeApostrophe = True

which was set for French users so that you could have items such as:

d’opportunités
d’occasions

d'opportunités
d’occasions

opportunités
occasions

i.e. if includeApostrophe = True, then “d’opportunités” is treated as one word. Otherwise, you would end up with and extra space: “d’ occasions”.

Sub MultiSwitch()

[bookmark: _Toc55977439][bookmark: _Toc164353263]Extending the use of MultiSwitch
(Video: https://youtu.be/K7xfLbh26oE)

This idea started as a way of using NumberToText in other languages. The NumberToTextUK macro starts from the cursor and searches through the text for a number (i.e. figures, like ‘5’ or ‘18’), which it then changes to ‘five’ or ‘eighteen’. But what if you wanted ‘cinq’ and ‘dix-huit’? or maybe ‘fünf’ and ‘achtzehn’?

I realised that I could write an ‘introductory’ macro to MultiSwitch , i.e. the macro would search for a number, then automatically run MultiSwitch , and MultiSwitch would then do the conversion. So you could use NumberToTextUK for English and then NumberToTextMultiSwitch for a second language.

So, in your zzSwitchList you would add :

1
eins

2
zwei

3
drei

4
vier

5
fünf

etc.

If on another day, you wanted to use a different language, you could just paste, at the very beginning of your zzSwitchList, another list:

1
un

2
deux

3
trois

4
quatre

etc

and because it’s higher up the zzSwitchList file, it would take precedence.

Then, when you quit Word, and it asks if you want to save your zzSwitchList file, just say No. Either that, or you select the language list you want to use, and pull it up to the top of the file. Then another day, pull a different language set of alternates to the top of your zzSwitchList. (If you want to do this often, ask me, and I’ll write a quick little macro that automatically moves these language-based number list around within the file – it would be easy enough to write.)

Sub NumberToTextMultiSwitch()

[bookmark: _Toc55977440][bookmark: _Toc164353264]Search and then MultiSwitch
(Video: https://youtu.be/K7xfLbh26oE)

The idea here is to specify a set of words that you know you (might) want to change. You run this macro once, it looks through the text, trying to find any of the words in its list (a list that you have put into the macro) and, when it finds one, it runs MultiSwitch, which automatically changes to the alternate.

To see the idea, I’ve set it up as a Desexer macro. In other words, I’ve given it a list:

myWords = "man,he,him,his,"

and then in my zzSwitchList, I have:

man
person

he
she/he

him
her/him

his
her/his

Or indeed, I could have:

man
person

he
she/he
they

him
her/him
them

his
her/his
their

That would mean that MultiSwitch would offer me, for ‘he’, a choice of either ‘she/he’ or ‘they’. OK, this might not be what you want, but it’s just a proof of concept, and as it’s a context-free macro, you can put in whatever words you want in the list, and then in your zzSwitchList file.

Sub SearchThenMultiSwitch()

[bookmark: _Toc55977441][bookmark: _Toc164353265]Search and then change to alternate
This is an idea similar to SearchThenMultiSwitch, but you can use it where the alternates are different from what you usually use in MultiSwitch, i.e. different from what is in your zzSwitchList file.

(Probably easier is to keep an alternative zzSwitchList file somewhere, and load that when you need to do this particular job. But I’ve written the macro now, so I’m not going to throw it away!)

Same idea: run the macro, and it checks all the words until it finds one that is in its list (a list that you supply) and then it finds the alternate – again from your list – and changes it.

These find and replace words are specified as per the following example, which is set up as a TenseChanger – present to simple past:

myWords = "am:was, are:were, is:was, have:had, has:had, can:could,"
myWords = myWords & ",does:did, do:did, goes:went, go:went,"

The spaces are ignored by the macro; it’s the commas and colons you have to be careful to get in the right order.

If you wanted to, you could make this TenseChanger work either way round, by adding a second set to the first:

myWords = "am:was, are:were, is:was, have:had, has:had, can:could,"
myWords = myWords & ",does:did, do:did, goes:went, go:went,"
myWords = myWords & "was:am, were:are, was:is, had:have, had:has, could:can,"
myWords = myWords & ",did:does, did:do, went:goes, went:go,"

Drat! No, that doesn’t work, does it?! Well the macro works, but the English is wrong! It’s OK that we use ‘have−>had’ and ‘has−>had’, but of course if it’s ‘had’, should it go to ‘has’ or ‘have’ – you don’t know without the context.

Still, this is another content-free macro; it’s up to you to decide how to use it for your own work.

Sub SearchThenChange()

[bookmark: _Toc55977442][bookmark: _Toc164353266]Load text from a menu into the clipboard

This is just a trick I use when I want to save myself typing time in applications other than Word. MultiSwitch is fine for saving typing time in Word, but the idea of this macro is to load up the clipboard with odd bits of information, such as my home address, email address, username/password, etc. Then I can go to the application in question and paste in the contents of the clipboard.

When you run the macro, it puts up a menu such as:

e - email
n - Paul Beverley
a - Address
u - UserName
p - Password

You then press your selected letter and the clipboard is loaded.

You set up your own menu items at the start of the macro:

m = m & "e - email =paul@archivepub.co.uk|"
m = m & "n - Paul Beverley =Paul Beverley|"
m = m & "a - Address =46 Nightingale Drive, Norwich NR8 6TR|"
m = m & "u - UserName =PaulBeverley66|"
m = m & "p - Password =Collywobble_543|"

Sub ClipboardLoader()

[bookmark: _Toc55977443][bookmark: _Toc164353267]Multiple clipboard
(https://youtu.be/CqG0v77vPkA and https://youtu.be/uSW26P5ylu0)

Sub ClipStore()

Sub ClipPaste()

Sub ClipPasteTextOnly()

Sub ClipPaste_1()

[bookmark: _Toc55977444][bookmark: _Toc164353268]Quick word switch
The previous macro (MultiSwitch) takes the word/phrase at the cursor, looks through your switch-words list and replaces it. By contrast, this one, WordSwitch, only works on finding single words but you don’t have to put the cursor actually in the word – just somewhere on the line in front of it. What’s more, WordSwitch incorporates the functionality of the NumberToText macro. So if the first ‘word’ that it finds is a number, say ‘42’, it will convert it to ‘forty-two’.

[bookmark: _Toc55981639][bookmark: _Toc55981737]Practicalities
The list for this and the previous macro can be held in the same Word file, so it’s very easy to add and subtract words/phrases for use by the two macros. There’s a sample list below (between the dotted lines), and as you can see, it can include all sorts of text comments in any style. The only thing the macros use is the text on any line containing a ‘>’ (used by WordSwitch) or any line containing an ‘@’ (used by MultiSwitch):

--
[bookmark: _Toc55981640][bookmark: _Toc55981738]Quick-find changes (WordSwitch)
one>1
two>2
three>3
four>4
five>5
six>6
seven>7
eight>8
nine>9
ten>10
eleven>11
twelve>12
thirteen>13
fourteen>14
fifteen>15
sixteen>16
seventeen>17
eighteen>18
nineteen>19
twenty>20

One>1
Two>2
Three>3
Four>4
Five>5
Six>6
Seven>7
Eight>8
Nine>9
Ten>10
Eleven>11
Twelve>12
Thirteen>13
Fourteen>14
Fifteen>15
Sixteen>16
Seventeen>17
Eighteen>18
Nineteen>19
Twenty>20

[bookmark: _Toc55981641][bookmark: _Toc55981739]At-the-cursor changes (MultiSwitch)
that@which
which@that
last@past
past@final
like@such as
such as@as with
Like@As with

than@from
to@from
ad hoc@occasionally
England@the UK
Holland@the Netherlands
Continuously@Continually
Continually@Continuously
Continuous@Continual
Continual@Continuous
continuously@continually
continually@continuously
continuous@continual
continual@continuous
Due@Owing
due@owing
however@but
as@because
an@one
etc, etc
--

[bookmark: _Toc55981642][bookmark: _Toc55981740]More practicalities
The macro, currently, checks the first 30 words counting from the cursor and, if it doesn’t find a match, it beeps at you. The number of words, and whether or not it beeps is set in the first few lines of the macro.

The special character that is used as a ‘delimiter’ in the switch-words list, to mark the find and replace words, is also set near the beginning of the macro. Currently it’s set as ‘>’ sign.

Sub WordSwitch()

[bookmark: _Toc55977445][bookmark: _Toc164353269]Quick character switch
This is similar to the WordSwitch macro above, but it searches only for individual characters.

[bookmark: _Toc55981643][bookmark: _Toc55981741]Practicalities
Once again, the same switch-word list file can be used. The special delimiting character, this time, is ‘_’, the underline character.

--
[bookmark: _Toc55981644][bookmark: _Toc55981742]Quick-find character changes
._,
;_,
,_:
:_;
for -iz- to -is- changes
z_s
Z_S
em dash to en dash
^+_^=
en dash to hyphen
^=_-
hyphen to em dash
-_^+

&_and
%_ per cent
and this autochanges to ‘percent’ if lang = US

[bookmark: _Toc55981645][bookmark: _Toc55981743]Quick-find word changes (WordSwitch)
one>1
two>2
three>3
four>4
five>5
six>6
seven>7
eight>8
nine>9
ten>10

US>USA
and this one also does numbers to words

[bookmark: _Toc55981646][bookmark: _Toc55981744]At-the-cursor changes (MultiSwitch)
that@which
which@that
last@past
past@final
like@such as
such as@as with
Like@As with
etc, etc

--

Sub CharacterSwitch()

[bookmark: _Toc55977446][bookmark: _Toc164353270]Quick character switch(2)
I was using the CharacterSwitch macro above for punctuation characters, mainly, but someone asked if it could be used for accents, say changing é to è. The answer is yes, but functionally it doesn’t work too well with my desired use for changing punctuation.

The reason is that you can see punctuation marks way ahead along the line and so just put the cursor anywhere vaguely before the punctuation mark in question. However, with accents, you need to put the cursor up much closer to the character you want to change; otherwise you might ‘catch’ the wrong letter.

No worries! You just create an almost identical macro, calling it, say, CharacterSwitch2, and just change the special delimiting character to, say, ‘\’ – the backslash. OK, it means another keystroke to remember, but you can think of the previous one as a punctuation changer, and this one as an accent changer – it’s entirely flexible, so you can arrange things to suit the way you work.

So below is my SwitchList file as it is now. Note that, by having a complete set of the various a’s, you can loop round them all, coming back to the unaccented a, and then start again – click, click, click, repeatedly running the macro.

--
[bookmark: _Toc55981647][bookmark: _Toc55981745]Quick-find character changes
._,
;_,
,_:
:_;
em dash to en dash
^+_^=
en dash to hyphen
^=_-
hyphen to em dash
-_^+

&_and

%_ per cent
and this autochanges to ‘percent’ if lang = US

[bookmark: _Toc55981648][bookmark: _Toc55981746]Quick-find character changes 2
a\à
à\â
â\á
á\a

e\é
é\è
è\ê
ê\e

[bookmark: _Toc55981649][bookmark: _Toc55981747]Quick-find word changes
one>1
two>2
three>3
four>4
five>5
six>6
seven>7
eight>8
nine>9
ten>10

US>USA
and this one also does numbers to words

[bookmark: _Toc55981650][bookmark: _Toc55981748]At-the-cursor changes
that@which
which@that
last@past
past@final
like@such as
such as@as with
Like@As with
etc, etc

--

Sub CharacterSwitch2()
' Version 03.01.11
' Scripted character switching
' Alt-#
specChar = "\"

listName = "zzSwitchList"
myDir = "C:\Documents and Settings\Paul\My Documents\"
etc
etc
etc

[bookmark: _Toc55977447][bookmark: _Toc164353271]Centre text
If you, like me, prefer to use a keypress to centre some text then this macro may provide a convenient form. It switches the line of text where the cursor is to centred text, but if the text is already centred, it puts it back to left aligned, i.e. it switches the centring on and off.

Sub CentreText()

[bookmark: _Toc55977448][bookmark: _Toc164353272]Bulleted list item to initial uppercase
[While this may not be exactly what you want to do, it should give you a template which you can edit to do something similar.]

This macro finds <bullet><tab> and forces the next character to uppercase. If you assign the macro to a keystroke, you can auto-repeat it down a list.

Sub ListUcase()

Or, if you’re feeling brave, you can do the whole text in one go:

Sub ListUcaseAll()

As it stands, it works from the current cursor position down to the end, but if you want it to do the whole text, regardless of where the cursor is, remove the ‘ ' ‘ from the .Wrap wdFindContinue line.

[bookmark: _Toc55977449][bookmark: _Toc164353273]Auto-bulleted list item to initial lowercase
[While this may not be exactly what you want to do, it should give you a template which you can edit to do something similar.]

This macro allows you to select an auto-bulleted (or auto-numbered) list, and it will lowercase the initial letter of each item.

If no text is selected, it will lowercase the initial letter of every single paragraph in the whole document! But it does warn you, just in case you forgot to select an area of text.

Sub AutoListLcaseAll()

If you only want to lowercase the initial letter of one line of your list at a time, then this will do that. Just put the cursor somewhere on the first line and run the macro as many times as you like.

Sub AutoListLcaseOne()

[bookmark: _Toc55977450][bookmark: _Toc164353274]Highlight all lists
If you want to go through a text looking at all the lists and doing things to them, it might be helpful to highlight them all so that you don’t miss any. This macro adds a green (or whatever you prefer) highlight to every line longer than 10 characters (minLength) and shorter than 150 characters (maxLength).

Sub ListHighlighter()

[bookmark: _Toc55977451][bookmark: _Toc164353275]Highlight all paragraphs of a range of word lengths
This macro was originally created for someone who wanted to highlight abstracts in a document that were over-length, i.e. had more than the specified maximum allowable number of words.

However, I made it more generally applicable: it highlights all paragraphs of a given range of word lengths. (N.B. The previous macro dealt with the number of characters.)

You can specify the minimum number of words and the maximum number, and the macro highlights paragraphs with more than the minimum and less than or equal to the maximum. The values are set at the beginning of the macro as:

myMinWords = 50
myMaxWords = 200

So for the original application, where the maximum number of words was 250, the user would set, say:

myMinWords = 250
myMaxWords = 20000

So effectively, that would highlight all paragraphs of 251 words or more (as no paragraphs are going to be more than 20,000 words!)

Conversely, if you want to highlight all short paragraphs (similar to the previous macro), you could use, say:

myMinWords = 1
myMaxWords = 20

This would highlight paragraphs of 20 words or less.

The highlight colour is set using: myColour = wdBrightGreen

and you can tell the macro whether or not to show you its progress, by selecting each paragraph it highlights. This slows the macro down a bit, so you might want to switch it off. The macros beeps when it has finished.

To speed the macro up, use: showAsYouGo = False

Sub ParaWordLengthHighlighter()

[bookmark: _Toc55977452][bookmark: _Toc164353276]Title case in quotes – capital on principal words only
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)
(Also video: youtu.be/AYgsFmFA7gU)
(See also CapperMax and CapperMin below.)

This is for changing a heading style – or a book or film title in quotes or brackets – into what some call title case, i.e. all the principal words having an initial capital, and all the ‘small words’ in all lowercase, i.e.

Heading with Capitals for the Main Words

or

The film I saw was ‘A Tale of Two Cities’ and it was good.

or

This new film (A Tale of Two Cities) is really excellent.

To do the first one, use TitleHeadingCapper – simply place the cursor anywhere in the heading and run the macro. It selects the whole heading (i.e. the whole paragraph) and sets it to title case.

[bookmark: _Hlk49324535]For the second one, use TitleInQuotesCapper – place the cursor BEFORE the quote of the title and it will only title-case the text that is in between the brackets/quotation marks – not the whole sentence ort paragraph. What’s more, it now has the option, having cased that quote to jump to the next quote. It can cope with an apostrophe-s within a title (e.g. ‘the rake’s progress’), but if there’s an s-apostrophe or a mix of brackets and/or quotation marks, make a rough selection that includes most of the title, and it will extend the selection up to the end quotation marks/brackets.

It can search for single quotes, or double quotes, or both, by setting True/False in the two lines:

findSingles = True
findDoubles = True

(And now there’s a global version – TitleInQuotesCapperGlobal – it titlecaps all items in quotes through from the cursor to the end of the file – be careful what you wish for!)

One option is whether or not you want it to initial-cap the first word after a colon – i.e. do you want ‘The Rake’s Progress: The Return’ or ‘The Rake’s Progress: the Return’. This is set by the colonCap = True option.

Another option is whether hyphenated words should have initial capitals on all parts, or only at the beginning, e.g. ‘Health-Related Issues’ or ‘Health-related Issues’. For the former, use hyphenCap = True.

N.B. The macro does its best to preserve, for example ‘BBC’, rather then its ending up as ‘Bbc’, but no promises!

Other things you can choose in the setup are at the beginning of the macros:

' If the headings are all in caps, say True
allIsInCaps = False

' Do you want an initial cap after a colon?
colonCap = True

' Do you want an initial cap after a hyphen?
hyphenCap = True

' List of lowercase words, each surrounded by spaces
lclist = " a an and as at by for from if in into with is of it "
lclist = lclist & " on or that the to "

Then someone in France wanted French language titles that appeared between square brackets to us case-titled, so I wrote a new macro that searches for the next square-bracketed text and case-titles it. It uses a list of French lowercase words, of course:

lcList = " de le la les des du au et dans sur "
lcList = lcList & " un une en à pour chez ou"

but you could change them for the list above to use the macro in English.

Sub TitleHeadingCapper()

Sub TitleInQuotesCapper()

Sub TitleInQuotesCapperGlobal()

Sub TitleInSquaresCapperFR()

[bookmark: _Toc55977453][bookmark: _Toc164353277]Add quotes and title cap
This macro uses the TitleInQuotesCapper macro above (so you need to have installed that macro first). Click in a sentence, and this macro selects the whole sentence, adds quotes and then gives the sentence title quote capitalisation.

Sub AddQuotesAndTitleCap()

[bookmark: _Toc55977454][bookmark: _Toc164353278]Remove quotes and remove caps
This macro uses the TitleUnCapper macro below (so you need have installed that macro first). Click in a sentence, and this macro selects the whole sentence, removes the quotes and then removes the capitalisation.

Sub TitleRemoveQuotesAndCaps()

[bookmark: _Toc55977455][bookmark: _Toc164353279]Headings: sentence case
(See also CapperMax and CapperMin below.)

This is the complementary macro to the one above: it makes all but the very first letter lowercase. But again you can optionally set the initial letter after a colon to uppercase – near the beginning of the macro, change this line below to True.

colonCap = False

Once again, it works on the current sentence (or heading), or, if the cursor is next to an open quote mark or an open parenthesis, just the text between the quotes/parentheses.

Sub TitleUnCapper()

[bookmark: _Toc55977456][bookmark: _Toc164353280]Heading: sentence case (2)
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)
(Video: youtu.be/AYgsFmFA7gU)
(See also CapperMax and CapperMin below.)

I’ve just had a situation where TitleUnCapper macro above was no good. The headings were of the form:

D1.3.4	This Title Needs Decapitalising

and unfortunately my do-all-possible-variations-in-one-macro principle doesn’t work because the ‘D’ of ‘D1.3.4’ is the start of the ‘sentence’. I have therefore had to write a separate macro that uses the tab to identify where the actual wordage of the heading starts.

(Same applies if it’s “<C>1.2.3 This Title Needs Decapitalising” – this is also catered for now.)

However, it also has the advantage that it copes with acronyms, it will correctly change:

Obtaining NVQ Qualifications Quickly

into:

Obtaining NVQ qualifications quickly

Another added feature: sometimes, for speed, you want not to have the feature where if an area is selected that’s the area acted on, if so, use:

allowAreaSelection = False

Sub HeadingSentenceCase()

[bookmark: _Toc55977457][bookmark: _Toc164353281]Book titles (i.e. Italic) to title case
(See also CapperMax and CapperMin below.)

This is a rather specific macro, but it saved the person for whom I wrote it a lot of time. She had to change all the book titles (a) in footnotes and then (b) in a references list (i.e. in a separate file) to title case. These book titles were identified as being the only text in italic. So, the first macro title-cases all text that is in italic in the whole file, and the second title-cases all text that is in italic in the footnotes of a file. (Change ‘footnotes’ to ‘endnotes’ in the macro if you want it to work on endnotes.)

Sub InitialCapItalicText()

Sub InitialCapItalicInNotes()

[bookmark: _Toc102491158][bookmark: _Toc164353282][bookmark: _Toc55977458]Convert text (heading) to title case OR sentence case
(Video: https://youtu.be/7EytWsdI1pQ)

A pair of macros to title-case (CapperMax) and sentence-case (CapperMin) a set of words. This can be either the (roughly) selected text or – if nothing it selected – the current paragraph (e.g. a heading).

The former has a list of words NOT to be capped and the second has a list of starts of words NOT to be lowercased.

CapperMax:
' List of lowercase words *not* to be uppercased
lclist = " a an and as at by for from if in is it into of "
lclist = lclist & " on or s that the to with "

CapperMin:

' List of (starts of) words *not* to be lowercased
notLC = " Brit United Kingd Engl Welsh Wales "
notLC = notLC & " Scot Irel Irish "

Obviously the words that you want not to uppercase (lowercase) will be different. You can add as many as you like, but please following the pattern above. You can add a third line, like the second, to fit more words in.

With the former, you can decide whether or not to cap the word following a colon and/or the word following a hyphen.

One editor said that one of their clients wanted an initial cap after a colon, so I added that as an option:

' uppercaseAfterColon = True
uppercaseAfterColon = False

Sub CapperMax()

Sub CapperMin()

[bookmark: _Toc164353283]All caps to title case
One editor had over 30 pages with probably 50 or more all-caps entries each of which had to be converted to initial caps. Here is a macro that finds all-caps words of three or more letters, and turns them all to just and initial cap.

I made it ignore two-letter words because the sample of text I tried it on had several ‘BS 429’ etc.
If you want it to do two-letter words as well, as in ‘THE TITLE TO WATCH’, then change the line in the macro to:

 .Text = "[A-Z]{2,}"

And at the moment, it highlights every word it changes, but you can just delete that line if you don’t want it to.

Sub AllCapsToInitialCap()

[bookmark: _Toc55977459][bookmark: _Toc164353284]Superscript next note number
If you have footnotes or endnotes which are supposed to have the note number at the beginning of the line in superscript, this macro goes from one line to the next and superscripts the digit(s) at the beginning of the line – run the macro once for each line to have its number superscripted.

Sub SuperscriptNoteNumber()

[bookmark: _Toc55977460][bookmark: _Toc164353285]Apply/remove italic/bold
These two macros apply italic/bold to the current selection. OK, so what’s wrong with using Ctrl-I and Ctrl-B? Well, if you double-click a word, it selects the space following the word as well. I generally don’t want the space to be italic/bold. Also, double-clicking a word that is followed by a single quote (be it straight or curly) also selects the quote, and I don’t want the quote mark to be italic/bold either.

So these macros first pull back the selection away from the space and/or the quote before applying the italic/bold.

Also, if nothing is selected, these macros inch forward by one character, italicising or boldising.

Sub Italiciser()

Sub Boldiser()

In one job I was forever removing the bold from short or long pieces of text, so it seemed helpful to have a macro that would remove the bold quickly and easily (and removed it without tracking the change).

[bookmark: _Hlk37923347]If no text is selected, it assumes that you want to unbold the current line. Having done so, it moves down a line, in case you want to run it again for the next line. If some text is selected, however, it removes the bold from just that bit of text.

Sub BoldKill()

And here’s the same thing for italic...

Sub ItalicKill()

[bookmark: _Toc55977461][bookmark: _Toc164353286]Removing styles and attributes from text
I’ve long been unhappy with removing formatting by using Word’s Ctrl-Space action – which runs the ResetChar function, so I’ve written a more ‘intelligent’ version – by which I mean that (a) it works differently, depending on what area of text is selected and (b) you can set, in the macro itself, which features do/don’t get ‘normalised’ (i.e. removed).

1) If no text is selected, it normalises the whole of the current paragraph.
2) If parts of more than one paragraph are selected, it normalises all of those paragraphs, i.e. you don’t need to accurately select whole paragraphs, but just select roughly.
3) If an area of text within one paragraph is selected, it only normalises the selected text and does not change the paragraph style.

Also, you can optionally decide whether the macro should remove highlighting and colour:

removeHighlight = True
removeColour = True

If a part paragraph is selected – i.e. (3) above – the features that are normalised are set by (at the beginning of the macro):

resetAllFormat = False

' which, if true, makes these redundant
resetBoldItalic = True
resetFontName = True
resetFontSize = True
resetSubSuper = True

i.e. the first option, if True, removes all character formatting (leaving the paragraph style unchanged), but you might, say, want to retain the font size, or not change the font name – your choice.

Sub NormaliseText()

[bookmark: _Toc55977462][bookmark: _Toc164353287]Italicising variables in an equation (1)
Suppose you have an equation:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

and you want to italicise the variables but not, of course, the numbers or the operators. No problem, watch:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

That took me six clicks, i.e. I put the cursor at the beginning of the line and ran the macro six times.

But then you spot that, if you’re being posh, the ‘max’ and ‘min’ should have been roman. Two mouse clicks plus running the macro twice more, gives:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

i.e. I put the cursor in front of each of ‘max’ and ‘min’, and the macro unitalicised them.

I’ve added three extra features. If, rather than just clicking somewhere in the text, you select some text, it simply (un)italicises the selected text.

Secondly, I found that with, say ‘Cs, Ci, and Dapp (t0)’, I got on a roll and ended up with ‘Cs, Ci, and Dapp (t0)’, so I got the macro to check if the ‘variable’ was ‘and’, and if so just do nothing and move on.

If you don’t (or do) want these changes tracked, the first line of the macro decides:

doTrack = False

I have found that this macro can “run away with itself” when working inside a table. I’ve therefore set a limit so that, after a certain number of characters it stops, so that you don’t have to undo (a character at a time!) all the rogue italicisations it has done.

maxChars = 10

Sub ItaliciseVariable()

[bookmark: _Toc55977463][bookmark: _Toc164353288]Italicising variables in an equation (2)
A variation on the theme is ItaliciseOneVariable, which is similar, but it has two modes of working.

(1) Similar to ItaliciseVariable, it runs along the line until it finds an alpha character (i.e. a variable) and but it only italicises that one single character, so it can be used more selectively than the previous macro; use multiple clicks of the macro if there are a couple of variables near each other.

(2) More powerfully, if you select some text then it italicises it all at one go, but only the variables, of course, not the numbers or the maths symbols.

So with this equation:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

it would take three clicks of the macro to italicise the first term; another four macro clicks and the ‘x’, ‘y’, ‘q’, and ‘G’ are done. Then put the cursor somewhere near the minus sign and click the macro again to do the second ‘G’.

However, if you select from the ‘Z’ to the ‘q’, one macro click sorts that out, then a second click and the macro runs along and gets the first ‘G’, and as before move the cursor and catch the second ‘G’.

Sub ItaliciseOneVariable()

[bookmark: _Toc55977464][bookmark: _Toc164353289]Romanise an existing italic
This macro looks along the line until it finds a bunch of italic characters, and unitalicises them.

Sub Romanise()

[bookmark: _Toc55977465][bookmark: _Toc164353290]Romanise italic/bold punctuation
(I’ve added a bold-to-roman version.)

[bookmark: _Hlk65300694]This macro looks through the whole document to finds any italic punctuation that is not in the middle of an area of italic text, and unitalicises it. The aim is to catch, say, “the x, y, and z axes...” where the commas are italic and should be roman.

Currently it works for comma, semicolon, colon and full point (period). However, this is set in the macro and can be changed.

Any punctuation that has been romanised will be highlighted, so when you’re reading through, you can check if it’s done the right thing and you can also get it to highlight the punctuation that it has checked but not changed. For no highlighting of unchanged punctuation, use:

' stayItalicColour = wdYellow
stayItalicColour = wdNoHighlight

and to highlight it, change this to:

stayItalicColour = wdYellow
' stayItalicColour = wdNoHighlight

Sub PunctuationItalicOff()

Sub PunctuationBoldOff()

[bookmark: _Toc55977466][bookmark: _Toc164353291]Make a phrase italic
(Video: youtu.be/P-6VdmT2BbE)

This was asked for, if I remember rightly, by someone having to italicise a load of book titles in a long references list. So, click somewhere in the first word of a title and run the macro. It selects up to, but not including, the next punctuation mark, and italicises it.

So in the list below, just click anywhere in each of the words that I’ve highlighted (just so you can see them – nothing to do with the macro)...

Kabata-Pendias A, and Pendias H (2001) Trace Elements in Soils and Plants (METHA). CRC Press, Boca Raton. 413pp.
Kisić, I (2014) Effects of soil contamination on the selection of remediation methods. In Guarina-Medjimurec, N. (ed.) Handbook of research on advancements in environmental engineering. IGI Global, 660pp.
Knüppel J (2012) Land treatment of dredged material including Mechanical Treatment and Dewatering of Harbor sediments (Third ed.). HPA.

and you will end up with:

Kabata-Pendias A, and Pendias H (2001) Trace Elements in Soils and Plants (METHA). CRC Press, Boca Raton. 413pp.
Kisić, I (2014) Effects of soil contamination on the selection of remediation methods. In Guarina-Medjimurec, N. (ed.) Handbook of research on advancements in environmental engineering. IGI Global, 660pp.
Knüppel J (2012) Land treatment of dredged material including Mechanical Treatment and Dewatering of Harbor sediments (Third ed.). HPA.

You will notice that, in the last one, it has not italicised the ‘)’. That’s because the macro saw the full stop on ‘Ed.’ But no worries, just move the cursor one place to the right and run the macro again, and it will italicise the ‘)’! On a long references list, this has got to save a lot of time – and tedium, right?!

If there’s a job where you also want to italicise the punctuation mark, then at the start of the macro, you’ve got:

andThePunctuation = False

so change it to True.

And if you want to italicise phrases that occur inside parentheses, you’ve got:

includeParens = True

so change that to False.

Sub ItalicisePhrase()

[bookmark: _Toc164353292][bookmark: _Hlk86072865]Italicise biological binomial species names
This macro, ItalicBinomial, can turn:

Cyperus papyrus subspecies madagascariensis
Cyperus papyrus subsp. madagascariensis
Cyperus papyrus ssp. madagascariensis

Bazzania decrescens var. ambahatrae
B. decrescens var. ambahatra

into

Cyperus papyrus subspecies madagascariensis
Cyperus papyrus subsp. madagascariensis
Cyperus papyrus ssp. madagascariensis

Bazzania decrescens var. ambahatrae
B. decrescens var. ambahatrae

in five clicks of the keystroke.

So, when you find a binomial as you’re reading through the text, simply click in the first word and run the macro.

The macro will then search out the very next initial capital letter, just in case there’s another binomial nearby. However, if this is more of a hindrance than a help, simply change the line:

jumpNext = True

to

jumpNext = False

In fact, also, if the ‘subsp’ or ‘var’ is in italic, it reverts it to roman.

Sub ItalicBinomial()

[bookmark: _Toc55977467][bookmark: _Toc164353293]Make italic text more easily visible
This macro was created for a job where the author (on his own admission) overused italic: almost every other word was italicised for stress. So this macro uses underlining to make the italic characters more visible. So the above sentence then becomes:

This macro was created for a job where the author (on his own admission) overused italic: almost every other word was italicised for stress.

I could then take all the italic off a paragraph, which is quickly done, leaving:

This macro was created for a job where the author (on his own admission) overused italic: almost every other word was italicised for stress.

Then as I read the paragraph, I can decide which of the words really do need to be italic, if any.

What’s more, the macro is very useful for something like the example given for the previous macro:

the x, y, and z axes...

which becomes:

the x, y, and z axes...

So I can see immediately that the commas are italic – which is otherwise not that easy to see with the naked eye.

Each time you run the macro, it first removes all the underlining in the whole document, then adds it to the (now reduced) characters that are still in italic.

Sub UnderlineOnlyItalic()

[bookmark: _Toc55977468][bookmark: _Toc164353294]Applying funny underlines
(Video: youtu.be/P-6VdmT2BbE)

Words allows you to use ordinary underlines, but all sorts of different funny underlines. This macro allows you to change the style of the underlines in either a selected area of text or all of the bits of underlined text in the whole of the file.

[image:]

Sub UnderlineStyle()

[bookmark: _Toc55977469][bookmark: _Toc164353295]Sub/superscript on/off
For years now, I’ve used F4 and F5 to turn super and subscript on and off (you can use whatever keystroke you want, of course):

Sub SuperscriptOnOff()

Sub SubscriptOnOff()

However, it occurred to me recently that I could do it a bit more intelligently. What I’ve done is to make each of the SubscriptSwitch and SuperscriptSwitch macros so that they are three-state switches: on, opposite, off.

So each macro goes through all three, but in the opposite direction. I’ve got used to using F4 for subscript and F5 for superscript, but sometimes I press the wrong one, so now I just press the ‘wrong’ key a second time.

If no text is selected, it selects the character to the right of the cursor.

Sub SubscriptSwitch()

Sub SuperscriptSwitch()

Actually, I’ve changed my mind. In practice, I don’t like these two new macros. So I’ve gone back to the old ones above!

[bookmark: _Toc55977470][bookmark: _Toc164353296]Italic to single (or double) quote toggle
“I keep having to change ‘Title of Something’ in single quotes to Title of Something in italic – might it be possible to do this with a macro?” she said.

Yes, sure! Place the cursor anywhere between the single quotes and run the following macro: the title will turn to italic with the quotes removed. What’s more, it also works the other way round: place the cursor anywhere in some italic text and run the macro and the text will turn back to roman with the quotes added around it.

In other words, each time you run the macro, the title will toggle between being in italic and having single quotes round it.

Oh, you want double quotes? OK, change the first line of the macro to:

useSingle = False

Sub ItalicQuoteToggle()

[bookmark: _Toc55977471][bookmark: _Toc164353297]Applying an attribute to some text
Here’s a macro that applying an attribute (here double-underline) to ‘some text’.

If the cursor is in a table, the macro applies the attribute to the current cell (or column or row, if you prefer – adjust the macro accordingly), but, if not...

If some text is selected, it applies it to that, but, if not...

It applies it to the current paragraph (or, if you prefer, sentence or word – adjust accordingly).

Sub ApplyAttribute()

[bookmark: _Toc55977472][bookmark: _Toc164353298]Select highlighted text
This macro allows you to place the cursor anywhere in the middle of an area of text that is highlighted in a particular colour. Running the macro then selects the whole of that piece of highlighted text.

You can use this macro just to select the highlighted area, but when the area is selected, you might as well do something with it – in my case, I wanted to italicise (or unitalicise – it toggles italic on/off) the text and then remove the highlight. You can no doubt adjust the last few lines of the macro to do to the text whatever you want.

Sub SelectHighlightedText()

[bookmark: _Toc55977473][bookmark: _Toc164353299]Paste as unformatted text
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

When you copy some text and paste it somewhere else, it sometimes screws up the formatting. What you need to do is to paste what is on the clipboard as pure text so that it takes on the formatting of the destination text.

Install this macro and give it the keyboard shortcut, say, Ctrl-Alt-V. Then, if you paste some text and realise there’s a problem with mismatched formatting, you just Ctrl-Z to undo the paste, and then Ctrl-Alt-V to re-paste it as text.*

Sub PasteUnformatted()

Another example where this tiny macro is really useful is when the author has used some odd combination of changes in font size, font style etc to achieve a ‘clever’ effect. Returning it to ‘proper’ text is easy: make a selection of the text – a few characters either side of the rogue characters will do – and do Ctrl-X then Ctrl-Alt-V.

Another facility I’ve discovered makes this facility even more useful:

Sub PasteWithEmphasis()

What happens now on my computer is as follows: I copy something and paste it into a new file, but I see that it’s bringing too much formatting with it from the original, so I do a Ctrl-Z to undo the first paste and then I have two options:

(a) The complete, radical, ‘paste as pure text’, introduced above, so that it simply takes up the format of the text into which it is inserted.

(b) A much more intelligent paste where it takes the basic style of the local text but it does at least bring with it the bold, italic, small caps, super/subscript etc that had been applied in the original file. So that means that H2O and stress and 60AD would come through intact, but in the style of the paragraph into which they are pasted.

[bookmark: _Toc55977474][bookmark: _Toc164353300]Getting pure text from PDFs and websites
The above two macros are OK when copying and pasting within Word, but if you copy something from other applications, such as PDFs or websites then getting the text out can sometimes be more problematic; the above macros may work, but if not, the following macro may well help.

It assumes that the clipboard is loaded with goodness-knows-what, from goodness-knows-where, but that it includes some text. If so, when you run it, it should paste into your document just the pure text out of whatever-it-was.

What it does is to open a new document, paste the who-knows-what in there wholesale. Then it copies it again, closes the new file, goes back into the original file and pastes just the text. Yes, I know, in theory it shouldn’t make any difference, but sometimes it does – pasting just the text out of something copied from a Word file often succeeds where pasting what has been copied directly out of a PDF or webpage doesn’t.

N.B. If there’s lots of data on the clipboard, Word my take several seconds, maybe even minutes, to process it. Please be patient and don’t start clicking on the Word file to get it to respond to you. If you really want to give up, press Ctrl-Break to stop the macro.

(If your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP PRESS! I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard – press Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’.)

(And you could try it with the PasteWithEmphasis function I discovered recently. I haven’t tried it yet.)

Sub ClipToText()

Sub ClipToTextWithEmphasis()

[bookmark: _Toc55981651][bookmark: _Toc55981749]Text from PDFs
However, when text is exported from a PDF there are sometimes two problems:

(a) Some words areruntogether and you couldn’t easilyseparate them.
(b) Ligatures come out as different letters, perhaps capital V and capital W.

I’m pleased to say that (for my current job only) I have solved both problems.

(a) is sometimes solved (or reduced, at least) by saying to the client, ‘The lo-res PDFs you sent aren’t good enough quality. Please would you send me hi-res PDFs?’

The text scraped out of the new file still has afew joinedup words, but nothing that a quick spellcheck won’t sort out.

(b) is solved courtesy of FRedit and a bit of patient working out of the necessary wildcard F&Rs.

(Interestingly, in the PDF for which I generated this list, all the ‘fl’s did actually came out as ‘fl’. It was only the ‘fi’ and the ‘ff’ that were converted to W and V respectively!)

So here’s the list I used:

~W([bcdfgjklmnpqstvwxz])|fi\1
~V([bcdfgjklmnpqstvwxz])|ff\1
~([a-z])W|\1fi
~([a-z])V|\1ff
~Wr([!io])|fir\1

While this has worked for this particular job, another job might have slightly different issues and require a slightly different FRedit list. What I suggest is that you examine where the problems lie, try a list something like this, start to spellcheck the resultant file and see what hasn’t worked. Then refine the list and try again.
[bookmark: _Toc55977475][bookmark: _Toc164353301]Copy and paste styles
There’s no need for any macros for this, although you can if you prefer:

Sub StyleCopy()

Sub StylePaste()

However, the CopyFormat and PasteFormat commands can be assigned to keystrokes directly. All you need to do is to use the Customize Keyboard dialogue box (call it up with my CustomKeys macro!) and select ‘All Commands’ in the left-hand list and then, in the right-hand list, find CopyFormat (there are a lot of commands, but pressing the ‘c’ key will at least get you to the beginning of the p’s, then pressing ‘d’ takes you to the beginning of the d’s, i.e. the end of the c’s) and assign a keystroke to it. And then do the same for the PasteFormat command.

[bookmark: _Toc55977476][bookmark: _Toc164353302]Unify the style of a paragraph or selection
(Video: https://youtu.be/hqPVJSZsFDk)

If the attributes/formatting (italic, bold, colour, highlight etc) have got a bit mixed up – perhaps through sections of text having been copied from elsewhere – then these two macros apply the same formatting to a section of text.

If some text is selected, it reads the style at one end of the selection, and applies it to the whole of the selected text. One macro copies the format forwards, and the other copies it backwards.

If no text is selected, the macro reads the format at the cursor, and then applies it from there to the beginning of the current paragraph or from there to the end of the paragraph.

(I find this a useful way to clear URLs back to the normal font etc.)

Sub UnifyFormatForwards()

Sub UnifyFormatBackwards()

[bookmark: _Toc55977477][bookmark: _Toc164353303]Copy to and paste from the spike
I’ve never really been able to get my head around the spike, so I’ve implemented my own version which I find more intuitive (you may not!) as it’s a bit more like the way the clipboard works. It has three functions:
1) Copy the selected text to the spike
2) Cut the selected text to the spike
3) Paste the whole contents of the spike

So the way my system works is that you can copy and/or cut a number of items of text to the spike. You then navigate to wherever you want it all to be placed and paste the spike. They come out in the order in which they were put onto the spike.

Unlike with the clipboard, when you paste the spike, the spike is then emptied. In other words, if there’s something on the clipboard, you can paste it repeatedly, but with the spike, you paste it once and it’s gone from the spike.

Sub SpikeCopy()

Sub SpikeCut()

Sub SpikePaste()

[bookmark: _Toc55977478][bookmark: _Toc164353304]Adding tags (codes) locally
(Video: youtu.be/AYgsFmFA7gU)

OK, there are ways of adding tags/codes (whatever you like to call them) automatically through the whole of a file, but maybe that’s all a bit too techie, and you just want to save yourself some typing time. What I do is to have macros assigned to, say, Ctrl-Shift-Alt-A, Ctrl-Shift-Alt-B, Ctrl-Shift-Alt-C and Ctrl-Shift-Alt-D – just use whatever keystrokes you’re happiest remembering.

Things vary from job to job, so the macro has various options at the beginning to determine what it does. When you move to a new job, you can change the options.

I can think of three different formats that a client might want:

1)
<A>This is the heading
This is the first line after the heading.

2)
<A>This is the heading
This is the first line after the heading.

3)
<A>This is the heading

This is the first line after the heading.

They would all want startText = "<A>", obviously, but to produce (1), you’d have endText = "", i.e. endText = nothing. So put a ‘'’ in front of the endText lines that you don’t want, and remove the ‘'’ from in front of endText = "".

For (2), you would want endText = "" and endTextOnSameLine = True.

For (3), you would want endText = "" & newLine and endTextOnSameLine = False.

Sub TagA()

[bookmark: _Toc55977479][bookmark: _Toc164353305]Tagging displayed quotations
(Video: youtu.be/AYgsFmFA7gU)

If you have quotations that need tagging, then this macro will add <DQ> and </DQ> (or whatever). Just place the cursor somewhere inside the paragraph to be displayed.

However, it also has the facility to (a) remove italic (which some authors like to add), (b) remove initial and final quotation marks from the paragraph, and (c) add a named style to the paragraph.

Sub TagDQ()
[bookmark: _Toc55977480][bookmark: _Toc164353306]Tagging bits of text
Someone wanted two macros – one to add <i> and </i> around “the next bit of italic text”, and another to add <IEQ> and </IEQ> around the currently selected text, and he wanted the tags to be coloured in red. So I put the two into one: if no text is selected, the macro whizzes along until it finds the next bit of italic (resp. bold) text and adds the <i> tags, but if some text is selected, it adds the <IEQ> tags.

And I’ve done a copy of the macro for bold instead.

The actual text of the tags is set up at the beginning of the macro:

tagTextSelected = "<IEQ></IEQ>"
tagTextItalic = "<i></i>"

Sub TagSelectedOrItalic()

Sub TagSelectedOrBold()

[bookmark: _Toc55977481][bookmark: _Toc164353307]Tagging lists
If you’ve got lists to tag, this macro should tag any kind of list: lettered, numbered or bulleted, whether it’s an automatic list or a list created with a style, or just a manually lettered, numbered or bulleted list. Just place the cursor on the first item of the list and run the macro (and while you do so, I’ll cross my fingers), and it will work out which type of list it is and (should) tag it accordingly.

You should end up with...

<NL>1. This is the first line.
2. Second line
3. Third line
4. Fourth line
5. Fifth line</NL>

or...

<BL>• This is the first line.
• Second line
• Third line
• Fourth line
• Fifth line</BL>

or...

<LL>a. This is the first line.
b. Second line
c. Third line
d. Fourth line
e. Fifth line</LL>

As with the previous macros, you can customise the codes it uses, and the positioning of the final tag.

There’s sure to be some permutation or combination of list creation that I haven’t thought of. So if it fails to tag your list properly, please send me a sample list, and I’ll try to add the necessary extra bits to the macro.

Sub TagList()

[bookmark: _Toc55977482][bookmark: _Toc164353308]Tagging captions
This macro goes through the whole file, adding a tag <Cap> or whatever, to all the figure captions, table captions and box captions. And it also checks to see if the caption has a full point (period) at the end (if wanted – not all clients do).

Sub FigTabBoxTagger()

[bookmark: _Toc55977483][bookmark: _Toc164353309]Checking continuity of tags
These two macros (a first iteration thereof) were asked for by a US client who wanted to check the continuity of those tags that are supposed to alternate: <it>, </it> or , or <BL>, </BL> for italic, bold and bulleted list.

But actually it doesn’t matter what specific codes you’ve used because the macro only checks one at a time – you just put the cursor inside a tag, and the macro reads it and checks it.

The first macro, TagChecker, checks continuity by going through the text, starting from the tag inside which you place the cursor. It looks for “<XXX>” and “</XXX>” being in alternating sequence, and it stops if the sequence is broken. If it gets to the end of the text and beeps then you know that all these tags are in pairs.

Each time it stops, and you make a correction, just put the cursor back inside one of the tags (either the on or the off tag will do) and run the macro again.

The second macro, TagHighlighter, gives you a ‘map’ of the use of the tag inside which you place the cursor, i.e. it creates a second copy of the document – just the text – and highlights the places where this tag is operative. So a too-large area of highlighting might indicate an error in the tagging.

If you wind the screen magnification out, to view many pages on screen at one go, that might help you to see what’s going on. If you then click in a suspect area and run the FindSamePlace macro, it will jump the cursor straight back into the main document, at that specific place.

If you then want to check a different tag, the macro will sense that you already have a file that’s a copy of your document and it will remove the first lot of highlighting and insert new highlighting for this new tag.

Hope they prove useful. I suspect that the first, alone, will do the trick, but who knows.

Sub TagChecker()

Sub TagHighlighter()

[bookmark: _Toc55977484][bookmark: _Toc164353310]Border off paragraphs
This arose when a client discovered that, by typing ‘---’ he got ‘a nice dotted line to divide off the text’. But he and I didn’t know how it was done or, more importantly, how to remove it! It looks like this:

Consulting the experts on SfEPLine revealed that it was a border attached to the paragraph with only the line below the paragraph having a visible (dotted) line. So the macro below removes the borders around the paragraph.

Sub BorderParaOff()

[bookmark: _Toc55977485][bookmark: _Toc164353311]Find and replace apostrophes
This is a funny one! In Word, I tried to do a find and replace, to change ‘Gerard ‘t Hooft’ to ‘Gerard ’t Hooft’. However, even if I tried changing ‘^0145t Hooft’ to ‘^0146t Hooft’, Word insisted on giving me the open single quote mark. Arrgghhh!

The only way round it seemed to be to switch off the automatic curly quote option, do the F&R and then switch it back on again. So I wrote this macro (needlessly, as you will see in a minute):

Sub FandRapostrophe()

However, when I came to write up this macro for the book, I thought, ‘I wonder if you get the same problem with FRedit.’ You don’t! If you use:

^0145t Hooft|^0146t Hooft
^0145phone|^0146phone

it works perfectly, ignoring the auto curly quotes feature. Sorted! :-)

[bookmark: _Toc55977486][bookmark: _Toc164353312]Inserting special characters (accents)
To insert ‘funny’ characters into the text, Word provides the Insert Symbol window. But do you have the same problem as me? If I want an accented character, say an ‘à’, I call up the Symbol window, then spend ages scrolling up and down, trying to find the section where these symbols occur.

Not any more. This macro types an accented character (any old character) into the text, and selects it. Then, when it calls up the Insert Symbol window, it goes straight to the accented characters section so that I can select the one I want straight away. On clicking ‘Insert’, my selected character replaces the one that the macro inserted.

Sub AccentPicker()

[bookmark: _Toc55977487][bookmark: _Toc164353313]Inserting special characters (Greek)
Here’s the same macro but for Greek characters.

Sub GreekPicker()

[bookmark: _Toc55977488][bookmark: _Toc164353314]Inserting special characters (scientific)
And here’s the same macro but for scientific characters such as ≈, ≡, ≈, ≤, →, ⅔, ∞, which are all near to each other on the Insert Symbol dialogue box.

Sub SciMarkPicker()

[bookmark: _Toc55977489][bookmark: _Toc164353315]Move date within reference
(Video: youtu.be/C1pIYOjKXXI)

This macro assumes that the reference is of the form:

Bloggs, Leon. The Hungry Soul: Eating and the Perfecting of Our Nature.
Chicago: University of Chicago Press, 1999.

and should be changed to:

Bloggs, Leon. (1999) The Hungry Soul: Eating and the Perfecting of Our Nature.
Chicago: University of Chicago Press.

Place the cursor in the first reference, run the macro, and it will stop when it hits either a blank line or the end of the file. It highlights and/or colours every reference it has not changed, so a highlighted and/or coloured reference means that it couldn’t find a date at the end of it.

You can choose your highlight colour and/or font colour by setting the lines at the beginning of the macro accordingly.

Sub ReferenceDateShift()

[bookmark: _Toc55977490][bookmark: _Toc164353316]Add dates to reference citations
(Video: youtu.be/C1pIYOjKXXI)

In the job for which the previous macro was written, the author had cited the references by name only, and not bothered to add the date. So with this macro, you again place the cursor on the first reference in the list. It then picks up the name and date of each reference, goes to the top of the file, finds the first occurrence of that name and adds the date in brackets. So, for:

Bloggs, Leon (1999). The Hungry Soul: Eating and the Perfecting of Our Nature.
Chicago: University of Chicago Press.

If the text says, ‘The view of Bloggs is that eating is a good thing’, it then becomes ‘The view of Bloggs (1999) is that eating is a good thing.’ It highlights the name and added date which is useful if you decide it’s in the wrong place and want to move it. (By changing the first four lines of the macro, you can change the colour of the highlighting and/or use coloured font.)

But this is only works, of course, if Bloggs only has one cited reference. But then if there are two, and the author just says, ‘Bloggs shows...’ then you’ve got to raise an author query anyway. You’ll just get: ‘The view of Bloggs (2007) (1999) is that eating is a good thing.’ at the first occurrence of Bloggs’s name.

The macro is a bit intelligent too. If the citation it finds is ‘(Brown: 81–82)’, it doesn’t just change it to ‘(Brown (2010): 81–82)’ but rather ‘(Brown 2010: 81–82)’.

Sub ReferenceNameFinder()

[bookmark: _Toc55977491][bookmark: _Toc164353317]List all references in the notes (for converting to short title)
(Video: youtu.be/C1pIYOjKXXI)

The idea here is to create a separate file with an alphabetic list of all the references in the footnotes, e.g.

1 See explanation in J Smith, Ask Me to Dinner (London: Peter, 1998) 164.

It picks out all the text looking like “J Smith, Ask Me to Dinner (London: Peter, 1998) 164.” and creates a list of them.

You can then use that list to help you see what need to be made into short title form (sorry, I’ve never used short titles, so I don’t know quite what you do, but having a list of all the references is reputedly useful.)

(At this point, you might want to make use of FindSamePlace, to jump back and forth between the main text and the references list. Oh, bother! I’ve just tried it, and while FindSamePlace allows you to jump from the footnotes out to the refs list, but it can’t manage to jump you back again because it only looks in the main text, and not the footnotes. If you want that feature, please ask, and I’ll add it to FindSamePlace. 19.05.13)

Anyway, can you see a problem? What about, say,

HLA Smith, The Concept of Fish, 2nd ed, edited by C Brown and J Round (Oxford: Clarendon Press, 1997) vi.”?

Unfortunately, it will split this into two ‘references’ because it has found two ‘authors’:

C Brown and J Round (Oxford: Clarendon Press, 1997) vi.
HLA Smith, The Concept of Fish, 2nd ed, edited by

OK, so when you run the macro, it asks if you want to do a test run. On the first run, you say ‘Yes’, and you’ll be able to see that the above reference has been split, so now you go back to this reference in the notes and ‘blank off’ the editors’ names by making them a different font colour:

HLA Smith, The Concept of Fish, 2nd ed, edited by C Brown and J Round (Oxford: Clarendon Press, 1997) vi.

If you run a test again, you’ll see that it has not highlighted Brown. (The highlighting is the sign that it is going to be the start of a new, separate reference.)

When you run the macro and say ‘No’ to the test run, it creates a complete list. However, it puts the ‘leftovers’ separately at the bottom, so you can look at them and see if any of them are actually references, even though the macro has missed them. This might be a fault of the macro (shock, horror!) or a fault in the formatting.

And what if you have organisations that it has missed? For example:

Law Commission, Cohabitation: The Financial Consequences of Fish (Law Com No 307, 2007).

You can give them dummy initials:

ZCZC Law Commission, Cohabitation: The Financial Consequences of Fish (Law Com No 307, 2007).

This now makes it look like a name: Mr ZCZC Law. But you obviously have to remember to take the initials out later. (If you are a FRedit user, you can just add a line ‘ZCZC|’ to your FRedit list.)

If your author uses some name format other than ‘J Smith’ – say ‘J. Smith’ or ‘Smith, J’ etc – look at the beginning of the macro, and you will find a range of different name formats. So add a ‘'’ in front of the search pattern that you don’t want and delete the ‘'’ in front of the search pattern that you do want.

If you come unstuck with this, do please send me a sample file, and I’ll try to fix it.

Sub ShortTitleLister()

[bookmark: _Toc55977492][bookmark: _Toc164353318]Change author forenames in references list to initials
(Video: youtu.be/C1pIYOjKXXI)

If the references list has full forenames (Smith, John James), but it’s supposed to be initials (Smith, J J) then this macro will offer you each name in turn, and you can decide whether to reduce it to an initial, or ignore it, or jump to the next reference, then press the following:

<.><Enter> – initialise
<Enter> – skip to next word
<+><Enter> – jump to next reference line
<0><Enter> – stop the macro

The macro tries to be a little bit intelligent. First, it ignores words in all caps, such as acronyms (or surnames in all caps – see next macro). Second, if you tell it to jump to the next reference, it first checks to see if there is some text saying, for example, “(Eds. John Smith & Fred Brown)”, in which case it offers you these names.

The choice of zero, plus and full point (period) is simply because these keys are near to the numeric keypad Enter key. If you don’t have a numeric pad, you could use, say, #, ' and], which are near the Enter key on the main keyboard (well, they are on my keyboard!). But you can set up, at the beginning of the macro, your own choice of keys.

Sub AuthorForenamesInitialiser()

[bookmark: _Toc55977493][bookmark: _Toc164353319]Reinsert author name, instead of dash in references list

This is where the author has used a dash (or some such punctuation as a ‘ditto’ marker) in a references list to indicate “the same author as above”. The macro goes through and finds the first of these markers, looks at the paragraph above to identify the author name and adds that in place of the marker, then looks for the next such marker.

It either works on a selection section or on the document as a whole.

The marker is set with the line:

repeatText = "^=,"

So in that case, it would be looking for an en dash followed by a comma.

As it stands, the macro looks for the second comma in the actual reference to define the name. This might not be what you need. In that case let me know what your references list looks like, and I’ll work out the logic needed in the macro to define the end of the ‘name’ of the reference.

So it would work for

	Beverley, P.E., “The book wot I wrote”, Archive Publications, Norwich 2020.

(which is the format of the references being edited by the requester of this macro) but I’d have to alter the macro if it were:

	Beverley, P.E. (2020) “The book wot I wrote”, Archive Publications, Norwich.

I just altered it!

Sub AuthorNameReinsert()

Sub AuthorNameReinsertParens()

[bookmark: _Toc55977494][bookmark: _Toc164353320]Check/change author/date formatting in references list
(Video: youtu.be/C1pIYOjKXXI)

(This macro won’t work if the surnames are all uppercase, so you’ll need to downcase them first – see the next macro.)

Place the cursor in the first reference to be checked and run the macro. It will then check through that reference and succeeding references, correcting the formatting of the author names and dates, as necessary, according to the formatting options that you have set up beforehand.

It deals with, for example, whether or not initials are spaced, and/or have a full point (period), whether initials are before or after the surname, using ‘&’ ‘and’ or neither, and whether you have commas and/or full points (periods) here there and wherever.

It was originally set up for Harvard type references, e.g.

Monaco, J.L. & Lawrence, W.T. (2003) Acute wound healing an overview. Clinics in Plastic Surgery 30, 1-12. Review.

But it will now also cope with numbered references:

[62]. Monaco, J.L. & Lawrence, W.T. (2003) Acute wound healing an overview. Clinics in Plastic Surgery 30, 1-12. Review.

And also references where the date is near the end:

65. Cheng A, Lakhiani C, Saint-Cyr M. Treatment of capsular contracture using complete implant coverage by acellular dermal matrix: a novel technique. Plastic and reconstructive surgery. 2013;132(3):519-29.

In this case, it also allows you to add the date after the names:

65. Cheng A, Lakhiani C, Saint-Cyr M. (2013) Treatment of capsular...

These options are set up at the beginning of the macro, so you have to edit the options according to the options needed for the job you are doing. (If you have to change options a lot, you can have two different sets of options by selecting either optionSet = 1 or optionSet = 2 at the beginning of the macro.)

If the macro finds something that looks odd, or it doesn’t know how to format, it will stop and ask. You can decide what to do with it.

The options at the beginning of the macro also include the possibility of getting the macro to generate a file showing which (if any) of the name/date texts it has changed. You can then check to see if it’s done them correctly. If it’s the macro that’s at fault, please tell me. Once you have gained confidence in the macro’s ability to do the job properly, you might decide to switch the change list facility off.

It copes with things like “Brown, P. and Green, H. (Eds.) (2003)”, and if it sees, say, “Brown, P. and Green, H., Editors. (2003)” it will at first think that the “Editors” is another surname (but with no initials). However, if the uninitialed ‘surname’, starts with “Ed”, then it will replace it with the optional edText or edsText (singular or plural) as listed in the options lists in the macro.

I’m afraid that it can’t cope with multi-word surnames such as ‘von Trapp’ or ‘de la Mare’, so if it finds these it stops and asks you whether to continue, highlight the reference or stop.

You can add to the list of words that might signify a multi-word surname:

avoidWords = "de la den der du ten van von"

This is case insensitive, so it will catch both ‘von Trapp’ and ‘Von Trapp’.

Also, there’s now an option to highlight any reference that has five or more authors. This was added because Wiley’s content guidelines say that references with five or more authors, should be listed with only the first three authors’ names, and then ‘et al.’

And having highlighted them, you can then go through afterwards with the macro, EtAlElision (below), which will delete the unwanted author names beyond a certain specified number.

One of the options at the beginning of the macro (in the sections marked as Case 1 and Case 2) you can specify whether or not the ‘et al(.)’ is in italic or not. Currently it says:

etalItalic = True

Change to False if you want it in roman.

Sub AuthorDateFormatter()

[bookmark: _Toc55977495][bookmark: _Toc164353321]Convert uppercase surnames to initial capital
(This and the following two macros seem to describe macros that do the same thing! Oh, it seems that this one aims to be global, through the whole list, while the other two are selective. Your choice.)

If the surnames in a references list are in all uppercase, then AuthorDateFormatter won’t work. This macro converts the surnames to initial capital only. Short Chinese surnames such as Hu and Lo are a challenge (i.e. they appear as HU and LO!), so the macro assumes that two-letter words are initials, and doesn’t change them.

However, if you also have Arabic names, starting Al and El, these too will be unchanged, so I’ve added a list at the beginning of the macro:

LCnames = "AL,EL"

and these names will be changed to initial capital by the macro. Yes, AL and EL could be initials, so you might like to have the option to change them or not. This is set by:

stopToCheck = True

Then you answer Yes or No, accordingly.

OK, I accept that ‘SMITH, ABC’ is going be turned into ‘Smith, Abc’, but you can’t have everything! Well, I could probably program more into the macro, to check for the position of the comma, but there are so many alternative formats for references lists that I’d really rather not, if you don’t mind; there are other things that could better occupy my time. :-)

Sub AuthorInitialCapitalReferences()

[bookmark: _Toc55977496][bookmark: _Toc164353322]Lowercase author surnames in references list
(Video: youtu.be/C1pIYOjKXXI)

This macro starts from the current cursor position and goes down through the text to the end of the file. It looks for, e.g. “SMITH, J.” and converts it to “Smith, J.”

However, there may well be other words (e.g. acronyms) that need to stay in uppercase, so the macro offers you each word in turn, and you can click ‘.’ and Enter to do the lowercasing, or just Enter to skip to the next uppercase item; clicking ‘0’ (zero) and Enter stops the macro. This is useful in case you accidentally lowercase an acronym; then Ctrl-Z is your friend!

. Enter – lowercase
Enter – skip to next all-caps word
0 Enter – stop the macro

The choice of zero and full point (period) is simply because these keys are near to the numeric keypad Enter key. If you don’t have a numeric pad, you could use, say, # and], two keys that are near the Enter key on the main keyboard (well, they are on my keyboard!). But you can set up, at the beginning of the macro, your own choice of keys.

Sub AuthorsNotAllCaps()

If you’re feeling brave, here’s a version that tries to be a bit more intelligent, but strips right through from the cursor. to the end of the file. You might want to adjust the wildcard find it uses to locate what it thinks is an uppercase surname.

Sub AuthorCaseChange()

[bookmark: _Toc55977497][bookmark: _Toc164353323]Reduce the number of authors in a references list to three
(Video: youtu.be/C1pIYOjKXXI)

The idea is that you first use AuthorDateFormatter to check the reference list; it helpfully highlights all the references that have more authors than the specified number.

You can then go to the first of these too-long references and run EtAlElision. It chops the reference down to just three author names and adds the ‘et al’ (spelt and/or italic, as you wish).

It then looks down the rest of the list, and every time it finds a highlighted reference, it chops it down to size too.

However, if you have not used AuthorDateFormatter, you can use this macro on a one-reference-at-a-time basis. Change the line at the beginning to:

doJustOne = True

Sub EtAlElision()

[bookmark: _Toc55977498][bookmark: _Toc164353324]Reduce multi-author citation to ‘Bloggs et al.’
(Video: youtu.be/C1pIYOjKXXI)

This macro works on the citation, not the reference. It changes, say, “(Bloggs, Brown and Green, 2005)” to “(Bloggs et al., 2005)”. Just click in ‘Bloggs’ and run the macro.

If your ‘et al’s have to be italic, change the first line of the macro to:

isItalic = True

N.B. When you try this macro, it may not work for the particular punctuation (or punctuations) that your author has used, so let me know what the punctuation is, and I’ll fiddle it to suit your job.

Sub EtAlCitationElision()

[bookmark: _Toc55977499][bookmark: _Toc164353325]Highlight all multi-author citations in text
(Video: youtu.be/C1pIYOjKXXI)

This is a companion to the above macro. It looks through the whole text for citations such as “(Bloggs, Brown and Green, 2005)” and highlights them. Then as you read the text, they are brought to your attention, and you can use EtAlCitationElision to change to ‘Bloggs et al.’.

N.B. Again, when you try this macro, it may not work for the particular punctuation (or punctuations) that your author has used, so let me know what the punctuation is, and I’ll fiddle it to suit your job.

Sub HighlightMultiAuthorCitations()

[bookmark: _Toc55977500][bookmark: _Toc164353326]Change author name order in references list
(Video: youtu.be/C1pIYOjKXXI)

(I’ve put two macros in here, neither of which is fully functional, but if this is something you would like to do, please send me a sample references list, and I’ll get one or other of them working for you.)

If you have a references list (or a set of footnotes/endnotes) where the name is in the wrong order, the aim of these two macros is to reverse, F. Bloggs or Fred Bloggs, to Bloggs, F. or Bloggs, Fred. And the other macro aims to do the opposite switch of name order.

Sub AuthorNameSwap()

Sub SwapNames()

Later: a third macro that seems to work for Livingstone DN to D.N. Livingstone.

Sub SwapNamesFullPoints()

Later: a macro that seems to work for Livingstone D.N. to D.N. Livingstone.

Sub InitialPullBack()

[bookmark: _Toc55977501][bookmark: _Toc164353327]Move date (year) to end of line in references list
(Video: youtu.be/C1pIYOjKXXI)

Yesterday someone said...

	My bibliography is currently in the format:

		Courtneidge, R., 1930. I Was an Actor Once. London: Hutchinson.

	and of course Chicago wants

		Courtneidge, R. I Was an Actor Once. London: Hutchinson, 1930.

	Is there a macro that will do this?"

With the macro I produced, you place the cursor somewhere in the first reference, run the macro, and it will work its way down through the list, moving each date to the end of the reference, stopping only when either it gets to a reference that doesn’t contain a date, or it gets to the end of the text.

As it stands, it puts parentheses round the date:

		Courtneidge, R. *I Was an Actor Once. *London: Hutchinson, (1930).

But if you don’t want parentheses then, at the beginning of the macro, instead of:

textBefore = ", ("

textAfter = ")"

you would put:

textBefore = ", "

textAfter = ""

And the other thing you can set at the beginning of the macro is:

' delete this many characters before the year
cutBefore = 2
' delete this many characters after the year
cutAfter = 1

The idea here is that you have to change ‘Courtneidge, R., 1930. I Was...’ into just ‘Courtneidge, R. I Was...’, so as well as cutting out the date, you also have to delete two characters before the date (comma and space), and one after (full point [period]).

Sub YearMoveToEnd()
[bookmark: _Toc55977502][bookmark: _Toc164353328]Swap initials and surname
(Video: youtu.be/C1pIYOjKXXI)

Reverses the order of the initials and surname of an author (P.E. Beverley −> Beverley, P.E.). Place the cursor in the name, but if the name is more than one word, select across from the first word to the last word: J. Van der Graff. The macro will ‘round off’ the selection for you.

Then there’s one to go the other way (Beverley, P.E. −> P.E. Beverley). Again click in the surname, or roughly select the words of a multi-word surname.

Sub InitialSwapper()

Sub InitialSwapperReverse()

[bookmark: _Toc164353329][bookmark: _Toc55977503]Swap initials and surname, move date, etc.
(Video: youtu.be/V-EU9oxNlws)

This is a single macro that does several different things, according to where the macro is placed and whether any text is selected.

1) Click in a surname, and it switches the name and initials from after to before the surname. If it’s “Smith, Joan C”, click in “Smith” and the macro changes it to “Joan C Smith”.

N.B. The macro needs to have something to identify where the name ends – which full stops and commas don’t do. If there’s a date (year) or if the title has an open quote, the macro will know to stop there, otherwise it beeps and admits defeat.

2) Click in a date (year) and it moves it to the end and, if necessary, adds parentheses around the date.

The macro also helps if you need a city, state and publisher before the date (year), inside the parentheses, i.e. you’re aiming for something like, “(Boston, Mass: Harvard Press, 1998)”.

3) If the date is at the end in parentheses, with the publisher information in front of it, i.e. outside the parentheses, then you need to move the open parenthesis; so select from somewhere in the year to somewhere in (as above) “Boston”, and the macro will move the open parenthesis to before “Boston”.

4) Finally, if there’s no publisher info, and you want to paste in a placeholder, such as “City, State: Publisher, ” select part of the word in front of which you want this text to be added, i.e. don’t include a space within the selection – that’s how the macro knows you want to paste in some text. The actual text used is set in the first line of the macro.

Sub ReferenceNameDateMover()

[bookmark: _Toc164353330]Check alphabetic order of references list (well, any list)
(Video: youtu.be/Yx97w8XJ6iE)

Place the cursor in the first reference to be checked and run the macro. It will then check through the list until it finds a pair of references that aren’t, apparently, in alphabetic order.

Sub AlphabeticOrderChecker()

An alternative approach is offered by this second macro. You select the list, run the macro, and it copies the list into a new file, sorts it and uses Word’s own Compare function to compare the sorted and unsorted lists. What you are then presented with is a track changed list showing what needs to be moved in order to correct the alphabetic order.

Sub AlphaOrderChecker()

And a third method you could try starts from the current cursor position and looks down through the list until it finds something suspicious. Then it stops and you can check, maybe alter, and continue. It has an option to check the second word in each reference, or just the first (surname) only. This is set by:

checkSecondWord = True

or False

Sub AlphabeticOrderByLine()

[bookmark: _Toc55977504][bookmark: _Toc164353331]Check Vancouver reference citations
(Videos: youtu.be/GI7QdNXaGRI and youtu.be/2PG7n5MCMCo)

If you want to check that your Vancouver citations actually appear consecutively in the text (hoping and praying that they do, so that you don’t have to renumber them!), you can run VancouverCitationChecker. It generates a list in a separate file, so that you can check them:
[1]
[2, 3]
[4]
[4]
[4]
[4]
[4]
[5,6]
[4]
[4]
[5, 6]
[7-9]
[10], [11]
[7-9]
[4]
[6]
[12]
[13]
[14-16]

You can check the order in which the citations first appear, and you can check that their formatting is consistent (i.e. not like the list I’ve quoted).

Sub VancouverCitationChecker()

But if you want to check whether any references are not (and again you hope not!) then this macro creates an ordered list of all the numbered citation. So, for example, here’s a list created by the pervious macro:

[1]
[2]
[3, 4]
[5]
[6]
[4]
[3, 5, 7–11]
[3, 5]
[10]
[4]
[3]
[3]
[4]
[3, 4]
[4]
[11]
[4]

(and note the snazzy coloured spaces which the latest incarnation of VancouverCitationChecker now generates!). But when you run this macro it generates:

001
002
003
003
003
003
003
003
004
004
004
004
004
004
004
005
005
005
006
007–011
010
011

You can now look down through the list and check that there aren’t any numbers missing from the sequence.

Sub VancouverAllCited()

[bookmark: _Toc55977505][bookmark: _Toc164353332]Collate all reference lists into one big list and sort it
This macro assumes that you have a single file of all the text of a book, and that, at the end of each chapter, there’s a references list. (This would be the case if you have used, say, MultiFileText to compile an AllText file.)

When you run the macro, it creates a copy of the whole text and tries to delete all the text that is not a set of references in a list. It colours the text in different font colours to distinguish them from one another, and then it creates a copy of the collated list and sorts it into alphabetic order. You can look through that list, looking for any anomalies because similar (supposedly the same) references will be alphabetically together, so differences will hopefully be easier to spot, manually.

Setting up: Look at the reference list and see what word(s) indicate the end of the list. These words are then set up in the macro by the line:

stopWords = "Table ,Figure ,Figures ,[[[[,<CH>"

So if any of these words occurs, it will be seen as the end of a list. So the references lists might be followed by a list of tables or figures, or the start of the next chapter. The ‘[[[[’ is what is used by MultiFileText to indicate the start of the next chapter. The ‘<CH>’ is a chapter start tag (code).

Sub ReferencesCollator()

[bookmark: _Toc55977506][bookmark: _Toc164353333]Type in today’s date
This very simple macro does something that can, probably, but done without using a macro – but I don’t know how, and someone wanted to do it, so here it is!

Sub Yesterdate()
' Version 09.01.12
' Type yesterday's date into the text

Selection.TypeText Text:=Format(Date - 1, "d mmmm yyyy")
End Sub

[bookmark: _Toc55977507][bookmark: _Toc164353334]Compare two sentences
(Video: https://youtu.be/EaFJuKTbhGw)

(This doesn’t only apply to whole sentences – indeed you could use it for paragraphs or more – but it’s easier to explain in terms of two sentences.)

Suppose you have two sentences that are very similar (in the same file or in two different files). You want to know which bits of it are different, so you select the first sentence and copy it (Ctrl-C), then you select the second sentence and run the macro. It highlights the selected sentence and compares it word by word with the version in the clipboard (i.e. the other sentence that you just copied) and it unhighlights any bits it can find that are identical. So what you end up with is one or more highlighted bits, which it thinks are different.

Note though that there may be circumstances, especially in long sections of text, where it might not give an accurate result, but as you use it, you’ll get the feeling of how it works.

In particular, if one sentence has a section missing, it might not show up, so to double check, you can run the macro again, but the opposite way round – i.e. copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

So you would get something like this:

The cat sat on the mat and smiled.
The cat sat on his mat and smiled.

You could apply the same technique to a single (long and complicated) word:

antidisestablishmentarianism
antidisestabilshmentarianism

Oh, bother! It doesn’t work for a single word! (The old version did.) Still, it’s much more useful for longer texts. Let me try:

In particular, if one sentence has a section missing, it might not show up, so to double-check, you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

In particular, if one sentence has a section mising, it might not show up, so to double check, you can run the macro again, but the opposite way round – i.e. copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

Now if I try it the other way around:

In particular, if one sentence has a section missing, it might not show up, so to double-check, you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

It’s not infallible, but I certainly find it much more helpful than the old version, which started at the beginning of the sentence and at the end of the sentence and stopped highlighting when there was a difference between the two:

The cat sat on the mat and smiled.
The cat sat on his mat and smiled.

antidisestablishmentarianism
antidisestabilshmentarianism

But here are my paragraphs again:

In particular, if one sentence has a section missing, it might not show up, so to double-check, you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

In particular, if one sentence has a section mising, it might not show up, so to double check, you can run the macro again, but the opposite way round – i.e. copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

and the other way:

In particular, if one sentence has a section missing, it might not show up, so to double-check, you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the second sentence (i.e. the one that’s already been highlighted), then select the first sentence and run the macro.

Still, you can take your pick as I’ve renamed the old version and key it in the book.

Hint: The macro SelectSentence is a very useful complement to this macro, i.e. click somewhere in the first sentence, and run SelectSentence; Ctrl-C; click somewhere in the second sentence, and run SelectSentence; then run CompareTexts.

Sub CompareTexts()

Sub CompareTextsOLD()

[bookmark: _Toc55977508][bookmark: _Toc164353335]Setting space before/after paragraph to specific values
If you have lots of manual spacing of paragraphs to do – altering the space before and/or space after paragraphs, you can do it from the icons on the QAT, but if you want to use keystrokes instead, and if you want flexibility in terms of the values used, here’s an idea. As it stands, each of these two macros reads the current value of the space, and changes it to the next value in the list at the head of the macro. Currently, it’s set to:

myValues = "0,3,6,9,12,0"

So if the space is 0, it increases to 3, and the next time you run it (i.e. click the appropriate keystroke again), it goes to 6, then 9, then 12, then back to 0.

But if you set it to:

myValues = "6,9,6"

then regardless of the initial value of the space, it will switch to one or other of 6 or 9, and then alternate between them.

So you can set it however you want it for your particular job.

N.B. This won’t do what you think:

myValues = "0,6,9,6,0"

i.e. it will not do 0−>6−>9−>6−>0; rather, it will do 0−>6−>9−>6−>9−>6. Can you see why? The macro only knows what the value is now, so if it’s currently 6, it will always change it to 9.

And if you just want to use the macro to set the value to something specific, just use, for example:

myValues = "6"

(To apply this to a single paragraph, just put the cursor somewhere in the paragraph. Or you can apply it to multiple paragraphs, though there’s no need to exactly select whole paragraphs.)

Sub SpaceBeforeSelector()

Sub SpaceAfterSelector()

[bookmark: _Toc55977509][bookmark: _Toc164353336]Reading and setting indents
I had a huge job where the paragraphs had had their indents changed piecemeal – left indent, right indent and hanging indent. And many of the changes were –“just a little bit this way or just a little bit that way”.

So I knocked up a couple of macros: one to read the numerical values of the three indents, and another to set them. Obviously, for the IndentsSet macro, you’ll have to type in the indent values you want for the particular job, and you might need two or three copies of the setting macro (each with different names, of course, e.g. IndentsSet1, IndentsSet2, IndentsSet3), for different types of indentation.

Sub IndentsMeasure()

Sub IndentsSet()

[bookmark: _Toc55977510][bookmark: _Toc164353337]Setting indents to specific values
Using a similar technique as for SpaceBeforeSelector, you can now set the first indent, hanging indent and right indent to a selection of different values of your choice.

(Again, to apply this to a single paragraph, just put the cursor somewhere in the paragraph. Or you can apply it to multiple paragraphs, though there’s no need to exactly select whole paragraphs.)

Sub IndentLeftSelector()

Sub IndentFirstSelector()

Sub IndentRightSelector()

[bookmark: _Toc55977511][bookmark: _Toc164353338]Formatting current paragraph as displayed text
This macro removes quotes from the current paragraph and romanises and trims trailing spaces.

Sub DisplayedTextFormat()

Pulling lines of text into paragraphs
(Video: youtu.be/FTdyBWm4AzY)

I had a file of 149,000 words that came out of a PDF and that was in short lines each of which had a newline at the end, i.e. they were paragraphs – 17,700 of them. Here’s an example of what I mean:

I had a file of 149,000 words that
came out of a PDF and that was in
short lines each of which had a
newline at the end, i.e. they were
paragraphs – 17,700 of them,

So, how was I to convert it to the original paragraphs? If the actual paragraphs, as opposed to the individual lines, had had double newlines, it would have been easy; it would need just a three-line FRedit list:

^p^p|zczc
^p|^32
zczc|^p^p

1. Change double newlines to a silly marker text.
2. Change all the rest of the newlines into spaces.
3. Replace the silly marker text items with double newlines

Unfortunately, there were no blank lines between paragraphs – each had only a single newline. Problem!

I could, of course, look through the whole book, typing <Enter> after every paragraph, and then run the FRedit list above. However, as I now know, the book has 1300 paragraphs – so that was going to take really rather a long time!

How could I reduce the time?

Idea:

~([.\?\!])^13|\1^p^p
^p^p|zczc
^p|^32
zczc|^p^p

That first line finds any line that ends with a full stop, a question mark or an exclamation mark (i.e. is the end of a sentence) and adds a second newline.

There may well be some sentences, within the middle of a paragraph, whose full stop/question mark/exclamation mark just happens to come at the end of a line, in which case the paragraph would be split at the end of that sentence, thus shortening some of the paragraph. But I decided that as I read through the book, if any train of thought had obviously been split, I’d be able to detect it.

But I then realised I had a more serious problem: that file contained quotes that were in short lines – a bit like poetry. My global approach would turn each of these quotes into paragraphs!

Back to the drawing board!

What I did in the end was to use the global F&R:

~([.\?\!])^13|\1^p^p

to split lines at (hopefully) paragraph ends, and then I wrote a macro equivalent of:

^p^p|zczc
^p|^32
zczc|^p^p

that worked only on the selected text (called LinesToParagraphs). What I then had to do was to put the cursor in the first line of a text-only paragraph (i.e. not a quote) and then scroll down through the text until I came to a quote. I then used <shift-click> to select all that of that section of non-quote text and run the macro.

Then I clicked somewhere in the first line of non-quote text and scrolled down to the line before the next quote. Slow, but a lot faster than any alternative I could think of.

Sub LinesToParagraphs()
[bookmark: _Toc55977512][bookmark: _Toc164353339]Format numbers – at cursor or in a selection
Place the cursor in a number and run the macro and it will automatically format it. Or selection an area of text, e.g. a whole table of numbers, and they will all be formatted.

But format in what sense? First, it deals with the commas needed , and then, if there’s a decimal part of the number it rounds it to the number of digits required. This is specified in the two lines:

decimalFormat = "###,###,###,0.00"
nonDecimalFormat = "###,###,###,0"

This is using a built-in function of Word for formatting numbers. However, is adds commas in four-digit numbers. You can avoid this by using the option below. And also, I’ve added a function so that, instead of commas, it can use either non-breaking spaces or thin spaces:

fourDigitComma = False
commaReplacement = ""
' commaReplacement = ChrW(8201) ' thin space
' commaReplacement = ChrW(160) ' non-breaking space

Just un-comment (remove the apostrophe) from the relevant line to implement this function.

Sub FormatNumbers()

[bookmark: _Toc55977513][bookmark: _Toc164353340]Selectively delete Oxford commas
When you run this macro, it hunts for the next Oxford comma and asks if you want to delete it. If you just press <Enter>, it deletes it and moves to the next one. If you type “.” and then press <Enter> it simply jumps to the next Oxford comma.

It will stop at the end of the file, but if you want to drop out of the macro before you reach the end, simply type “0” and then press <Enter>.

(I’m lying; actually, if you enter ANY character other than “.” it will drop out.)

At the beginning of the macro it has:
 myDelete = ""
 myJumpNext = "."

So if you want the macro to use different keys for any reason, you can change these two lines.

Sub OxfordCommaSelectiveDelete()

[bookmark: _Toc55977514][bookmark: _Toc164353341]Switching the ruler display on and off
There might be some keystroke within word to do this but, if so, I can’t find it. So here’s a macro you can use and therefore assign to a keystroke.

Sub RulersShow()

[bookmark: _Toc164353342]Add ‘However’ at start of a sentence
This macro adds ‘However’, followed by a comma, at the start of the sentence. It will also delete a lowercase ‘however’ if there is one later in the sentence.

You have to place the cursor after the first word of the sentence in which you want to insert ‘However’ at the beginning. Then it doesn’t matter where the lowercase ‘however’ is, or even if there isn’t one there at all yet, the macro inserts ‘However,’ at the beginning and lowercases the first letter of the following word.

[bookmark: _Toc55977515]If there was already a ‘however’ somewhere in the sentence, the macro will delete a comma that was following it (if there was one), but it doesn’t delete a comma that precedes it. So you still have to deal with any remaining stray commas in the sentence.

Sub However()

[bookmark: _Toc164353343]Set a current word(s) to small caps
This macro simply changes the selected text into small caps. For just a single word you don’t even have to select it; you can just leave the cursor somewhere in the word and run the macro, and it will change the whole word to small caps.

If you have, say, a title that has upper case first letter and you want to keep that as it is, while you change the rest of the word to small caps, then just select that part of the word that needs small-casing, i.e. all but the initial capital.

Sub SmallCapWord()

[bookmark: _Toc164353344]Replicate the edit you just made
This macro replicates an edit you have just made throughout the entire document, i.e. makes it a global edit. It is set up to change an ordinary space to a thin space, and a spaced hyphen to a spaced en rule. Being global, this is a macro to be used with caution – be careful to select exactly what you want replicated, otherwise it could make changes that you don’t want.

The good thing is that the macro highlights the changes it has made (set to yellow but could be changed), so you know where to look to spot any errors.

To be more specific:
(a) it might be that you have an ordinary space between a digit and an abbreviated SI unit (e.g. 10 km), in several places throughout the document, and you want to change all those instances to a thin space: you have to make your edit in the first occurrence and then select the thin space with the following abbreviation. You then run ReplicateThisEdit and it will make the same change throughout the document. Don’t just select the thin space, or the macro will change every single space in the document to a thin space! So if you have different SI units then you will have to edit one of each (6 mA, 9 N, 13 MPa, etc) and run the macro once for each.
(b) or you could use is if you have a lot of spaced hyphens and you want to change each one to a spaced en rule; if so, you make the edit and highlight the en rule together with the space each side of it, then run ReplicateThisEdit. (Don’t only select the en rule without the spaces, because all hyphens throughout the document will be changed to en rules!
If you have other characters for which it would be useful to do global changes, and you are willing to ‘fiddle’ with the macro, you could add one or more lines like these:

' thin spaces for spaces
If InStr(myReplace, ChrW(8201)) > 0 Then myFind = Replace(myReplace, ChrW(8201), " ")

' en dashes for hyphen
If InStr(myReplace, ChrW(8211)) > 0 Then myFind = Replace(myReplace, ChrW(8211), "-")
(You need to know the unicode numbers for the special symbols, such as en dash (= 8211), but the WhatChar macro will tell you what it is.)

Sub ReplicateThisEdit()

[bookmark: _Toc164353345]Move selected text to start of sentence
This macro takes whatever text you have selected and moves it to the beginning of the sentence. It changes the case appropriately of the new first letter and the old first letter of the sentence.

For this to work properly, you have to select the space preceding the first word you want to move, otherwise the macro will uppercase the second letter of the new first word! You can select one or several words and the macro does as described, so long as you remember to select the space preceding the word(s). However, if you just leave the cursor in the middle of a word and run the macro, then it moves the word the cursor is in, together with the following word – both to the start of the sentence. If you put the cursor between two words and run the macro, it will move the two words following the cursor to the start of the sentence.

Sub MoveToStart()

[bookmark: _Toc164353346][bookmark: _Hlk163656592]Moving list items (paragraphs) around speedily
The best way to make sense of these macros is to see them in action in a video, but how they work is explained below.

These four macros allow for speedy manipulation of short paragraphs, e.g. list items or references, but I suppose they could be used for larger paragraphs.

ShiftUp and ShiftDown move the item where the cursor is placed up or down one place.

ShiftOut cuts the current item from the working document and pastes it into a temporary file that is open on the computer; the file’s name must contain the word “list”, e.g. MyTempList. If you roughly select a number of items (i.e. click in the first item and Shift-click in the final item) it cuts those items and pastes them into the temporary file.

ShiftIn goes to the temporary file and cuts the current item and pastes it in the working file below the item where the cursor is placed in the working file.

If the items need splitting out between two (or more!) working files, simply click in the file to which the current item in the temporary file needs to go and run the macro: a very quick process.

Sub ShiftUp()
Sub ShiftDown()

Sub ShiftOut()
Sub ShiftIn()

[bookmark: _Toc164353347][bookmark: _Hlk113118579]13 Editing – information ____
Under this heading, I’ve grouped together macros that provide useful information about the bit of text you are working on.

[bookmark: _Toc55977516][bookmark: _Toc164353348]Identifying the next character
(video: https://youtu.be/LAoxTjckzEE)

(Thanks to Marcela Robaina, there is now a Spanish-language version of this: Chirimbolos!)

Can you tell what each of these characters is: l|I1°º? Difficult, isn’t it?

The differences are more obvious if I increase the font size: l|I1°º but in Century Gothic it’s hard: l|I1°º

Similarly, can you tell the difference between − and –? If you put them between angle brackets you get a clue:

>−< and >–<

The first one is a proper minus sign, and the second is an en dash. The maths symbols are designed so as to line up horizontally: >−+=<.

The WhatChar macro looks at the character to the right of the cursor and tells you what each character is. So it will tell you for each of l|I1°º that they are a lowercase l (el), a vertical bar (vertical bar), an uppercase I (eye) and a number one, then a proper degree symbol, a masculine ordinal (as used in Nº6) and a superscripted ‘o’.

And while I was at it, I decided that it might as well give us more information about the character, so it also tells you if the character is super- or subscripted, and also what font it’s in (but only if it’s in a font other than the font used by Normal style.

[image:]

What’s more, it gives the Unicode number in hexadecimal as well as in decimal. So what?! Well, for example, a Unicode Greek beta (β) is displayed as ‘Unicode: 946 (Hex 3B2)’. This is useful because if you type ‘3B2’ (or ‘3b2’) followed by an Alt-X, it turns into a beta character. (But watch out, because the ‘B’ can look a bit like an ‘8’, depending on the screen font used, and its size on screen.)
[image:]

If you get some of the old Symbol font characters and want to replace them with proper Unicode characters, I know of no way to find and replace them using Word’s F&R. However, you can do so with FRedit. Here’s an example – – and if you use WhatChar, you get:
[image:]

If you now click <ctrl-V> you get:

<&HF062>|

which is the start of a FRedit item. Just add a proper Unicode β:

<&HF062>|β

and when you run FRedit, all those nasty Symbol fonts betas will be changed to Unicode.

(The FRedit library, which comes with FRedit, has several of these set up for you already.)

Accented characters
In a document using unicode, a character such as a u-umlaut ‘ü’ can be produced by either be a single unicode (U00E1) or a pair of characters: an ordinary ‘u’ followed by a no-space umlaut accent, which then is displayed on top of the ‘u’.

So WhatChar checks to see if the character after the character you’re trying to check is a no-space character, in which case it beeps and warns you.

Now with added voice!
I’ve added the possibility of using voice so that it speaks the character, and then you don’t need to clear the on-screen prompt window, giving you all the gory details; I find this speeds up the process . However, if you want those details, just select the character and run the macro again.

So to enable voice, you need to change to:

useVoice = True

and you also have to ‘uncomment’ the line at the beginning of the macro:

' If useVoice = True Then Set speech = New SpVoice

i.e. delete the apostrophe.

If you try this and Word complains: “Compile error: User-define type not defined” then you need to enable voice on your copy of Word (available from Word 2010 onwards, I think):

In VBA, click on Tools–References and find “Microsoft Speech Object Library”, tick the box and click OK. On my computer there are two lines saying “Microsoft Speech Object Library”, so make sure you tick the one that says ‘sapi.dll’ at the end, and not the one saying ‘sapi_one’.

Sub WhatChar()

Sub Chirimbolos()

[bookmark: _Toc55977517][bookmark: _Toc164353349]Show any ‘funny’ codes in the text
(Video: youtu.be/_fWD4sXNg5s)
[investigate, strange characters]
The idea here is that if you suspect that the text has ‘funny’ codes in it, just place the cursor ahead of where you think the funny characters might be, and run the macro. It looks through the words, one at a time, and if it finds anything ‘funny’, it stops and indicates what it has found.

Now, ‘funny’ is initially defined as any ASCII code less than 32, or greater than 255 (i.e. Unicode). However, that includes things like end of paragraph (13) and tab (9), so you can decide whether to show those sorts of things by appropriate True/False settings in the first few lines.

You can also decide whether or not to show the Unicode numbers or not. And, since dashes are usually displayed as Unicode numbers, there’s an option not to show dashes even if you are showing Unicode numbers.

If you make the first line of the macro:

showEverything = True

then it will show everything. Then if you want to be selective, you can change this back to False and select the True/False appropriately for each feature, as mentioned above.

(Anecdote: The genesis of this macro was when I had a problem where the right-hand end of each line containing a note marker that was raised by about 3 pt, and no one seemed able to solve it. This macro revealed the following: in the place where it said, say ‘blah, blah.6 Wibble wibble...’ what was actually there was ‘blah.[21][21][2][21][21] Wibble’, i.e. there was the expected ASCII [2] for the note marker (highlighted above), but it had some [21]s either side of it. These are apparently ‘closing field braces’. This was apparently some sort of debris remaining after the file had been multiply edited by various contributors. With a global F&R, I found ^21 and replaced it by nothing, and this solved the problem.)

Sub TextProbe()

[bookmark: _Toc55977518][bookmark: _Toc164353350]Spellcheck a single word
(Video: youtu.be/W-JX3P1hZF8)
This macro speeds up the process of spellchecking a single word. There’s no need to select the word; just place the cursor anywhere in the word and press whatever key combination you have assigned to the macro. If the word is correctly spelt, the computer beeps, but if it is incorrect, it opens the spelling dialogue box for you to correct the spelling.

If the beep annoys you, remove the line that says beep; you will know that the spelling check has been run because the cursor jumps to the start of the word.

Another small timesaver is that, unlike using F7, after it has done the spellchecking and found that the work is OK, it does not then ask if you want to spellcheck the rest of the document.

The macro comes in three ‘flavours’, one that spellchecks in UK English, one in US English, and the third in whatever the current language of the document is.

And now a fourth: spellcheck the word in the other language, i.e. if the current language is UK, check it in US, and vice versa.

Sub SpellcheckWordUK()

Sub SpellcheckWordUS()

Sub SpellcheckWordCurrent()

Sub SpellcheckWordUSUK()

[bookmark: _Toc55977519][bookmark: _Toc164353351]Spellcheck with language warning
How many times have I started a spellcheck and then, in the middle somewhere, it throws up, say, ‘flavour’ as a spelling error. Drat! I hadn’t noticed that the language set for the document is US English.

This macro checks the current language and, if it’s UK English, it just carries on with the spellcheck as normal, but if it’s US English, it beeps at me first, and then does the spellcheck.

So, all you do is to allocate this macro to the F7 key, so that everything work as as normal, apart from the warning beep for US language files.

Sub Spellcheck()

This next version is, perhaps more useful. What happens is that if it’s all in US English, it’ll just beep at you, but if there’s a mix of languages, it will throw up a warning message.

Sub SpellcheckWarn()
[bookmark: _Toc55977520][bookmark: _Toc164353352]Spellcheck and auto change
This macro checks the spelling of the word at the cursor. If it’s OK, it beeps and moves on. If it’s not a correct spelling, it replaces the word with the first alternative that Word offers. However, if there are no alternative spellings offered, it highlights the word instead. (Remember that, for either change, you can just use Ctrl-Z to undo it.)

Sub SpellWordChange()

(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Another similar macro is SpellingSuggest which simply changes the spelling of the word at the cursor to Word’s suggested replacement. This macro doubles for use with FRedit – see above in the Pre-editing Tools section.

Sub SpellingSuggest()

[bookmark: _Toc55977521][bookmark: _Toc164353353]Delete all spelling errors in a file
(Video: youtu.be/AqREu_iJ2Yg)

I can’t remember why, but someone wanted to delete all the incorrectly spelt words from a file. That’s what this macro does!

(Now updated, on request from the user, so that if an area of text is selected, it only works on that part of the text, not the whole of the document.)

Sub DeleteAllSpellingErrors()

[bookmark: _Toc55977522][bookmark: _Toc164353354]Show (or not) spelling errors in a file
You may, like me, not like having all those red wiggly lines under words in your text. In which case, it’s nice to be able to switch them on and off quickly and easily. That’s just what this macro does.

Sub SpellingShowToggle()

[bookmark: _Toc55977523][bookmark: _Toc164353355]Count this word/phrase
[bookmark: _Hlk102146132](video: https://youtu.be/LAoxTjckzEE)

This macro allows you to select some text, and it will tell you how many times that word/phrase occurs in the whole text (now including the footnotes and endnotes).

Not only does it do a straight count, but it also does a case-sensitive count, a count for italic/bold/bold-italic versions thereof and even a whole-word count.

So, for this document, if you select ‘et al’, it gives you:

All: 24
Case sensitive: 24
Italic: 4
Bold: 2
Wholewords (case sensitive): 22

i.e. it finds things like ‘my pet alligator’, and knows they are not proper ‘et al’s.

If you don’t select a word or phrase, it will assume that you want to search on the word at the cursor.

The ‘phrase’ can even include newlines, so you could, for example, count the number of times a word occurs at the start of a line.

If you don’t want the facility to count the different bold/italic variations, they can be switched off in the first line of the macro, and if you don’t want it to spend time doing a whole-word count (which on a long document with foot/endnotes can take some time), that can be switched off in the second line of the macro.

However, in this latest version, I’ve added a feature whereby you can set the maximum time that you’re willing to wait for an answer (maxTime = 0.5 means half a second), so if the macro has time within that limit, it will do more and more of the different counts. If it ran out of time, it will tell you so.

Sub CountPhrase()

[bookmark: _Toc55977524][bookmark: _Toc164353356][bookmark: _Hlk130639555][bookmark: _Hlk56418351]Count hyphen/space/single word
[bookmark: _Hlk102145991](Video: https://youtu.be/hqPVJSZsFDk, Later video: https://youtu.be/LAoxTjckzEE)
(Even better video: “Super-Searching 4” (7:49) https://youtu.be/m4gVuqrl83w)

The idea here is that if you are reading the text and you see a word such as ‘mock-up’ (which could equally appear as ‘mock up’ or ‘mockup’) and you want to find out what the author has used predominantly, you just click in ‘mock’ and then shift-click in ‘up’, and run this macro. It will count the numbers of each variant.

[image: Graphical user interface, text

Description automatically generated]

(As you can see, it also checks for ‘mock–up’ and ‘mock/up’, at no extra charge!)

What if it’s ‘mockup’ that’s at the cursor? Click in the word (don’t select it) and run the macro; it does its best to guess where the split should come?

[image: Graphical user interface, text

Description automatically generated]

Change it if necessary and press Enter.

Sub HyphenSpaceWordCount()

[bookmark: _Toc55977525][bookmark: _Toc164353357]Count words remaining
(video: https://youtu.be/LAoxTjckzEE)

This macro counts the number of words from the current cursor position, down to the end of the document, to give you a feel of how much more reading there is to do!

There’s a simple version:

Sub CountRemainderSimple()
' Version 25.04.16
' Count words below the cursor

wordsTotal = ActiveDocument.Content.Words.Count
Selection.End = ActiveDocument.Content.End
wordsLeft = Selection.range.Words.Count
Selection.Collapse wdCollapseStart
perCent = Int(1000 * (wordsLeft / wordsTotal)) / 10

MsgBox (perCent & "% left. (Very roughly " & _
 Int(0.0007 * wordsLeft) & " thousand words)")
End Sub

Unfortunately, the method used to do the count (Words.Count) treats even items of punctuation as ‘words’, so it only gives a very rough indication.

MS Word also has some statistics functions which give a much more accurate count of the number of words (the same as displayed on the status bar at the bottom of the window). However, these statistics refuse to work if the file has bits of text that have been set to different languages.

So, when using this more complicated macro, if it finds multiple languages, it asks you if you want to standardise to either UK or US English. If you need to preserve the multiple language settings, then you can’t use this macro, but if you say ‘Yes’ when it asks if it’s OK to set the language, then it gives an accurate word count.

I like CountRemainder to display as ‘23.5’, rather than ‘23,521’ because I ‘think’ in thousands of words, but if you prefer the latter, alternative display format then there’s now an option at the beginning of the macro:

' altDisplay = True
altDisplay = False

Sub CountRemainderSimple()

Sub CountRemainder()

[bookmark: _Toc55977527][bookmark: _Toc164353358]Count italic text
One reader has a job involving an nth edition update of a book where they put all the new text in italic. Payment is on the basis of one rate for repeated text and a higher rate for new text. So the idea is to count the number of characters in italic and then the rest are roman.

However, you need to take account of the fact that there may be text in footnotes, endnotes and textboxes. These are also counted.

Sub ItalicCount()

[bookmark: _Toc164353359][bookmark: _Hlk56416290][bookmark: _Toc55977528]Count words within sections
If you want to know how many words there are in each section of a document, you can use the style of the section heading – say, Heading 1 and this macro will count the words between one section heading and the next.

It counts them all and then creates a new document, listing the section titles and the number of words in each. For example (I’ve scraped a bit of the text around here, and put it in a separate file, to generate...):

	Before first heading
	33

	Count words that are highlighted
	56

	Count words within sections
	69

	Copy paragraphs that contain highlighted (and coloured) text
	55

	Highlighting words not in vocabulary list
	108

The first line is the count of the words at the head of the document, before the very first Heading 1 item in the document. If it’s a big document of a number of chapters then you might change the first line of the macro from:

	myStyle1 = "Heading 1"

to, say:

	myStyle1 = "Chapter title"

If you want to count the text between both of two headings, then use, say:

	myStyle1 = "Heading 1"
	myStyle2 = "Heading 2"

And if you use two style, and want the first style to be in bold in the list, use:

	doBold = True

Sub CountSectionWords()
[bookmark: _Toc164353360]Count pages within chapters
If you want to know how many pages there are in each chapter of a document, you can use the style of the chapter heading – say, Heading 1 – and this macro will count them.

Sub CountChapterPages()
[bookmark: _Toc164353361]List all the italic words
(Video: youtu.be/AqREu_iJ2Yg)

This macro first uses the macro, CopyTextSimple (assuming you have it loaded in your computer), to create a new file with a copy of all the words in the file. Then it simply deletes all the non-italic text, so you’re left with a list of all the italic words and phrases.

I wrote it because an author wanted me to make suggestions for words to put in his glossary. Fortunately, he had used italic to highlight all new words as they appeared, so it was very easy. Once the list was created, I used SortIt to sort it into alphabetic order, then DuplicatesRemove to leave a unique list of words and phrases. (Oh, I could have used SortAndRemoveDups, which does the two jobs in one!)

Sub ItalicWordList()

[bookmark: _Toc55977529][bookmark: _Toc164353362]Multifile word counting
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

This macro looks at the files within a particular folder and loads all the .doc, .docx and .rtf files, one by one, and counts the total number of words.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP
Macro Jobs.doc
Roman cats.doc
Stats.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not ignored) files, opening each one and counting the contents.

Now we need to think about the actual counting – it’s not straightforward!

As you may be aware, Word’s word counting is – shall we say – ‘idiosyncratic’, in that different ways of counting give you different answers. This macro therefore (a) does the count using the ‘readability statistics’ and (b) conditions the file by getting rid of all the punctuation in an appropriate way and then counting the number of words with the Words.Count command. For example, ‘can’t’ and ‘whole-hearted’ are treated as single words, whereas ‘either/or’ is treated as two words.

The macro also copies the text out of all the textboxes, plus the text of the foot/endnotes, and counts that too (by each of the two methods). This it refers to as ‘extra’ text.

It then presents you with a complete listing of all the files, showing the ‘number of words’ according to the two methods – which it refers to as ‘(stats)’ for ‘stats’ and ‘(count)’ for counted – for the main text, the ‘extra’ text and the whole of the text in each file.

I’ve tested a range of files, looking at the ‘stats’ value, the ‘counted’ figure and the values given by <Alt-W>. The conclusion I’ve come to is that it’s impossible to say which is the ‘correct’ value (or least inaccurate). Apart from anything else, is ‘1996’ a ‘word’? Is ‘1996-98’ one word or two? Is ‘i.e.’ a word? Try this: open a new document, type ‘i.e.’ a few times, or ‘1996’ and confirm that each is indeed treated as one word. Now, copy this current paragraph and paste it into your new document. Note the word count and then try deleting either ‘i.e.’ or ‘1996’. When I tried it, sometimes the word count dropped by one, but at other times it remained unchanged.

Also, what about section numbers: ‘1.3.4 Title of this subsection’, or whatever?

At the beginning of the macro, you can select to use either stats, or count or both.

useStats = True
useBoth = True

If the files contain equations – either MathType or Equation Editor – then it counts those too. You can disable this feature by using:

countEquations = False

Sub MultiFileCount()

[bookmark: _Toc55977530][bookmark: _Toc164353363]Totalling words from various places
Someone asked on SfEPLine about adding up the number of words in quotes. Just for fun, I knocked up a macro that allows you to marks bits of text and it will add them to a list, totalling them as it goes, so you end up with something like:

 89	p.5 – So wrote Hugh
 119	p.14 – It sounds like
 18	p.176 – Ordering is utterly
 114	p.176 – Similarly: in
 87	p.177 – Author: You
 29	p.178 – Macrostate indifference is
 51	p.179 – Dominance lemma:
 82	p.97 - 89	
=====
 507

It doesn’t total the numbers; it just adds in the next item that you’ve selected, giving the number of words selected, the page number and the first three (or whatever number you choose) words of the selection.

If you add something in error, you can simply Ctrl-Z it off the list to take you back to where you were before you added it.

There’s no need for you to create a totals file as it adds one if one doesn’t exist already.

Sub WordTotaller()

[bookmark: _Toc55977531][bookmark: _Toc164353364]Check the column totals
I just needed to check lots of figures in tables such as:

Number	Per cent
4	1.7
45	18.7
103	42.7
72	29.9
13	5.4
4	1.7
241	100

Now in each table, the figure at the bottom of each column should be equal to the total of the figures above. So if you put the cursor in the first cell of the column, it adds up the figures until it drops off the bottom and then checks back to see that the final figure was indeed the total of the other.

Because there are likely to be rounding errors, I have allowed the user to set an accuracy:

allowErrorPercent = 0.01

so if the error is less than 0.01%, the macro just beeps to tell you it’s OK, but if the error is more than that it tells you what it thinks the total should be, and you can act accordingly – raise an author query or whatever.

The okChars line allows some of the cells to contain things like en and em dashes, and also full points (periods) without thinking that it has reached the end of the column.

If a box has a zero value, then as long as it has a hyphen or dash or an actual zero then it carries on looking for the end of the column of figures. However, if a cell is completely blank, it assumes that it has reached the end of the column.

Sub ColumnTotal()

[bookmark: _Toc164353365][bookmark: _Toc55977532]Check the totals of a set of consecutive numbers
If you select any range of text that includes various numbers, even if the numbers include commas separating the thousandss and/or decimal points, the macro will total all of the numbers for you. However, it will also check to see whether the first number is the sum of the remaining numbers or if the final number is the sum of the others, in which case it beeps to reassure you that all is well.

If it can’t find a summation figure, it simply tells you what the sum is.

Sub NumberTotaller()

[bookmark: _Toc164353366]What is the full filename?
For some macros, you need to put into the macro the address of some file that it uses. To make this easier, open the Word file in question, and run this macro. It copies the full filename, so you can then go back to the macro and paste the filename in wherever it is needed.

Sub FullFileNameCopy()

[bookmark: _Toc55977533][bookmark: _Toc164353367]Get information from Google etc
(Video: youtu.be/RYggCNcK-h8, Later video: https://youtu.be/LAoxTjckzEE)
(GoogleMapFetch: https://youtu.be/MgW7x_BOG3c)

(See the following section for how to set up your own macro for accessing your favourite website.)

N.B. With most of these macros, if you select nothing, it will launch the current word; if you do a rough selection of a range of words, it will try to round off the selection to include the first and last words in the range.

I discovered that it is possible to launch a URL from within a macro, so I realised that if I selected a word or phrase, I could look it up straight away on Google. What’s more, I could have a second version of the macro that puts quotes around the selected phrase before sending it off to be Googled. Then I thought – yes, and with Wikipedia. Then I thought – yes, and with OUP’s online dictionary, etc, etc.

N.B. If Google throws up a prompt about accepting all cookies, the macro will fail to paste in the traget word/phrase. In which case, you’ll have to use GoogleFetchCookie, which jumps to the ‘AccepAll’ button and introduces a delay to allow the pasting to take place.

For GoogleFetch: Click in a word (or select some text), but there’s no need to select exact whole words; the macro will expand to the nearest word end, e.g.

London marathon

will send “London marathon” to Google.

Ditto for GoogleFetchQuotes, etc.

Currently GoogleFetch is set to Google UK. Simply replace the text in between the quotation marks in the fourth line:

mySite = "http://www.google.co.uk/search?q="

 Here are some country-specific URLs:

Australia: http://www.google.com.au/search?q=
Canada: http://www.google.ca/search?q=
India: http://www.google.co.in/search?q=
Ireland: http://www.google.ie/search?q=
New Zealand: http://www.google.co.nz/search?q=
South Africa: http://www.google.co.za/search?q=
US: http://www.google.com/search?q=

For Google Scholar: https://scholar.google.com/scholar?q=

There are also now some German versions (and now Dutch ones below).

[bookmark: _Hlk144456317]For a speedy search of GoogleMaps, just click in a word (or roughly select some text – the macro rounds off the selection), run GoogleMapFetch, and the word or text will be launched to GM.

And if you want to go from home to Hull, type “h to Hull” or just “h/Hull” and run the macro. Or to go from another frequently used address (say your work) to Timbuktu, type “w/Timbuktu” and run the macro. Or for place-to-place searches use “harwich to hull”, or “harwich/hull”.

You could even set up a round trip, say: h/leeds/s6 6ru/oxford/h.

The postcodes for ‘h’ and ‘w’ are set at the beginning of the macro.

myHome = "NR8 6TR"
myWork = "M21 0UW"

And I guess it would work with Zip codes or whatever postal code you use in your country.

You might possibly want to change the site address to your own country, currently:

mySite = "http://www.google.com/maps/dir/"

so then, for Egypt, you’d change it to:

mySite = "http://www.google.com.eg/maps/dir/"

For NgramFetch: Click in a word (or select some text), run NgramFetch, and the word/text will be launched to Ngram. If you want to compare two (or more) words/phrases, separate them with commas:

compared to, compared with

There’s no need to select exact whole words; the macro will expand to the nearest word end:

compared to, compared with

The Year start and Year end of the display is set at the beginning of the macro:

yearStart = "1800"
' yearStart = ""

yearEnd = "2000"
' yearEnd = ""

If you want to search up to the current year, use:

yearEnd = ""

Also added, a fetch macro for the Maori dictionary, Te Aka.

Sub GoogleFetch()

Sub GoogleFetchQuotes()

GoogleFetchCookie()

Sub GoogleBooksFetch

Sub GoogleScholarFetch()

Sub GoogleFetchDE()

Sub GoogleFetchQuotesDE()

Sub GoogleFetchUS()

Sub GoogleFetchQuotesUS()

Sub GoogleFetchCA()

Sub GoogleFetchQuotesCA()

Sub TeAkaFetch()

Sub WorldCatFetch()

Sub NgramFetch()

Sub OUPFetchPremium()

Google Maps
Sub GoogleMapFetch()

for wikipedia.com
Sub WikiFetch()

for thesaurus.com
Sub ThesaurusFetch()

for openthesaurus.de
Sub ThesaurusFetchDE()

for dictionary.com
Sub DictionaryFetch()

for duden.de
Sub DictionaryFetchDE()

for the Australian Macquarie dictionary

Sub MacquarieFetch()

Spanish medical dictionary
Sub DTMEfetch()

Spanish language dictionary
Sub RAEfetch()

Bible verses
Sub BibleGatewayFetch()

Sub BibleHubFetch()

The former has a line:

myVersion = "NIV"

which you could change to NKJV or ESV etc. Or use myVersion = "" if you don’t want to specify.

With these two macros, you can carefully select the reference, but if you just place the cursor in the (abbreviation of the) name of the book they do their best to select the numbers and punctuation before and after the name, e.g. with “1 Cor 13:8”, click in “Cor” and it should pick it up OK. If you find that with the particular punctuation you try it with it doesn’t work, please let me know, and I’ll try to fix it.

Sadly, I can’t get the latter macro to work fully. After the webpage comes up, you will need to click Ctrl-V and press Enter to complete the fetch. However, it does have the advantage that you can select, say “greatest of these is love”, and it will find 1 Cor 13:13, whereas the Gateway doesn’t offer that possibility. (Mind you, GoogleFetch tells us that the quote is from 1 Cor 13:13, anyway!)

(And, based on an idea from Rob Worth...)

If your document has different texts in different languages, then as long as those bits of text are set to the relevant language, then this macro sends the current word off to different dictuionaries, depending on the language set.

Which dictionary is used for each given language is set within the macro:

Select Case myLanguage
 Case wdEnglishUS
 mySite = "https://www.merriam-webster.com/dictionary/"
 Case wdEnglishAUS
 mySite = "https://www.macquariedictionary.com.au/features/word/search/"
 Case wdGerman
 mySite = "https://www.duden.de/suchen/dudenonline/"
 Case wdFrench
 mySite = "https://www.collinsdictionary.com/dictionary/french-english/"
 Case Else
 mySite = "https://www.lexico.com/definition/"
End Select

If you want to add extra languages, you will need to follow this same pattern. If you can’t work out what to do for any given language, just get in touch.

Sub DictionaryFetchByLanguage()

for PubMed
Sub PubMedFetch()

for OneLook
Sub OneLookFetch()

for Merriam Webster
Sub MerriamFetch()

And for Merriam-Webster legal, you can use:

Sub MerriamLegalFetch()

And if you have subscriber access to Merriam-Webster unabridged, you can use:

Sub MerriamCollegiateFetch()

Sub MerriamUnabridgedFetch()

Sub MerriamMedicalFetch()

Sub MerriamThesaurusFetch()

For the Dictionary.Law website:

Sub LawDictionaryFetch()

British Library catalogue website:

Sub BLcatalogueFetch()

When my son moved to Paris, I tried to get my O-level French back from the dead, so I’ve started using Google Translate. (Quand mon fils a déménagé à Paris, j’ai essayé d’obtenir mon français O-level de la mort, donc j’ai commencé à utiliser Google Translate.)

This macro looks at either the currently selected text, or, if there’s nothing selected, the current paragraph, and delivers it to Google Translate. However, before it does so, it spellchecks the first word of the text and, if it’s a spelling error in both UK and US English, it assumes that it’s in French, and translates it to English.

Google Translate offers French and Spanish (and many other languages), so if you want the latter, at the beginning of the macro use:

 myLanguage = "es"

Sub GoogleTranslate()

Some Dutch colleagues asked for Netherlands-related versions, so here you go:

Sub WikiFetchNL()

Sub GoogleFetchNL()

Sub GoogleFetchQuotesNL()

Sub ThesaurusFetchNL()

Sub DictionaryFetchNL()

Sub GroeneBoekjeFetch()

For Chicago Manual of Style If the former works for you, use that; if not, try the latter.

Sub CMSFetch()

Sub CMSFetchAlt()
[bookmark: _Toc164353368]Set up your own Fetch macro (1)
(Only use this macro if there isn’t a macro above, already set up for you.)

Open your browser and go to your chosen website; now type a suitable word into the search box and click Enter.

If you look at the browser’s URL, you’ll see how the it was formed from your chosen word(s), for example:

https://www.dictionary.com/browse/elephant

or

http://www.google.co.uk/search?q=elephant

The principle now is that you give the macro the bit to the left of your chosen word, and then the macro, when you run it, will combine together (a) the URL of the site with its search function (e.g. ‘search?q=’, if it needs it) and (b) the text you happen to have selected.

So, in VBA, you have to create a copy of this generic SomethingFetch macro, giving it a sensible new name, and then copy ‘the green bit’ above and paste it into the first line of the macro, to give something like the following (but note that, for my two example websites, there is already a macro ready to use on my website):

Sub DictoFetch()
' Paul Beverley - Version 27.08.22
' Launches selected text to dictionary.com

mySite = "http://dictionary.com/browse/"

or

Sub GoogleFetchUK()
' Paul Beverley - Version 27.08.22
' Launches selected text to google.co.uk

mySite = "http://www.google.co.uk/search?q="

That’s the theory, and it creates the most reliable Fetch macros. However, for a variety of reasons, it doesn’t always work, especially for websites that have password-protected access. If you can’t get it to work, try method 2.

Sub SomethingFetch()

[bookmark: _Toc164353369]Set up your own Fetch macro (2)
(Only use this macro if you’ve tried macro (1) above, and you can’t get that to work.)

(Sadly, it seems as if this option is not open to Mac users as Word for Mac doesn’t support the SendKeys command that it uses, sorry.)

This method requires a lot of fiddling to get it to work, though once you’ve nailed it, of course, you’ve got a macro that will save you lots of time.

The principle is this: When you access a search site manually, you open the page, click in the search box, and paste in the word(s) you’ve copied from your Word file, and click Search (or press Enter).

The macro’s job is to simulate your manual actions, but it can’t simulate mouse clicks, so you have to do that search again, but this time use the Tab key to get into the Search box.

So when you try this, count the number of times you have to click it – mind you, on some (friendly) sites you find that the cursor is already in the Search box, and you don’t need to press Tab.

When you know how many Tab presses you need, create a copy of this dummy macro, giving it a new name, and enter the address of the web page, and also the number of times you had to click the Tab key:

Sub MySiteFetch()
' Paul Beverley - Version 27.08.22
' Launches selected text to mysite.com

mySite = "http://dictionary.com/browse/"
numTabs = 5

Then when you run the macro, it reads the text from Word file, copies it and then launches the website according to the URL you give it, and passes the Tab characters through to the keyboard, plus a Ctrl-V (for paste) and then an Enter – all as if you had typed them in yourself.

The trouble is, this often doesn’t work either! What the macro has to do is ‘count to ten’ before sending off the key codes. The reason is that if you pass the characters to the keyboard too soon, the web page is not ready for them and it misses them, so nothing happens!

So how long do you have to wait? Well, it just depends, so you have to try it out and see. Here are a few examples from having tried various different webpages. (N.B. The sites I have used as examples all have their own dedicated macros anyway, so rather use those. Only use this macro if you really can’t get the version (1) to work.)

Sub SomethingFetchAlt()
' Paul Beverley - Version 27.08.22
' Launches selected text to Xyz website.

' mySite = "https://www.merriam-webster.com/": numTabs = 0: myWait = 0.9
' mySite = "http://google.com/": numTabs = 0: myWait = 0.5
' mySite = "https://dictionary.com/": numTabs = 11: myWait = 2
' mySite = "http://thesaurus.com/browse/": numTabs = 11: myWait = 1.5
mySite = "https://www.macquariedictionary.com.au": numTabs = 0: myWait = 2.5

So numTabs = 11 means ‘type 11 Tab characters’, and myWait = 2 means wait for 2 seconds before typing in the tab characters. As you see, the longest wait I had to give was 2.5 seconds, and three of the sites I tried didn’t need any tab characters.

So when you try it, start with, say, 4.5 seconds to be sure it will catch the characters you send to the keyboard, and then try reducing it, as you want as short a delay as possible, for speed.

Sorry it’s so complicated. If you try a site and can’t make the macro work, do get in touch.

Sub SomethingFetchAlt()

[bookmark: _Toc164353370]Fetch from multiple dictionaries

Select a word (or just click in it) and run this macro to look up the word on three different dictionary websites: it is set for dictionary.com, oxforddictionaries.com (Lexico) and collinsdictionary.com, but you could change the options at the beginning of the macro if you have another go-to site that you want to use.

Sub DictionaryMultipleFetch()

[bookmark: _Toc164353371]Using Google to search a specific site
Google has a command that allows you to search one specific site, so if you want to find out, say, about the courses on creative writing that UEA runs, you can type into Google:

creative writing site:uea.ac.uk

So if you have a site you often want to search, you can put it into this macro.

At the beginning of the macro is:

' mySite = "wordmacrotools.com"
' mySite = "archivepub.co.uk"
mySite = "uea.ac.uk"

As it stands, I would just type ‘creative writing’, select it, and run the macro.

So, if you use mySite = "wordmacrotools.com" then all our macros will be searchable.

Sub GoogleSSFetch()

[bookmark: _Toc55977534][bookmark: _Toc164353372]Launch successive URLs from the text
This macro allows you to launch a URL from a Word file into your browser – just click to the left of the URL and run the macro. But if you select a bit of text just before the URL, e.g. double-click the word prior to the start of the URL, it will launch that URL, but also the next few URLs that occur in the text.

When you run the macro, it will ask you how many URLs to launch, but a default number will be offered. This is set at the beginning of the macro, so you can change it:

numberOfURLs = 10

Note that if the file contains hyperlinked URLs, because these may be invisible, the macro will first select the text from the cursor to the end of the file, create a new file, copy this selected text to the new file and then turn all the URL links into visible URL text.

So to save time, you can use this new file to launch the next set of, say, ten URLs.

The macro has the option to highlight all the URLs as it sends them to the browser, so you can tell which URLs you have already tested.

highlightURL = True
myHighlight = wdGray25

If the browser says there’s an error in the URL, the macro will report this back to you. It will select the recalcitrant URL, so you can try copying it and pasting it manually into the browser; the browser will then tell you what error was generated – usually it’s: Error 404: File Not Found.

However, look carefully at the selected text. While developing the macro, one URL was as shown below, and the selection was as per the grey highlight:

www.communityservices.nd.gov/uploads%5Cresources%5Cstrawbale.pdf

I therefore realised that the macro was failing to allow “%” to be a recognised character in the URL, so I added “%” into this line (the “%” is highlighted, so you can find it):

acceptableChars = "/a-zA-Z0-9.,;:=&#\?\(\)\[\]_+\-%" _
 & ChrW(8211) & ChrW(8212)

Now, if you discover a URL with a “funny” characters that the macro doesn’t recognise, please add it into that line, after the “%”. But also, please tell me what the character is, so that I can add it into the published version of the macro. Thanks!

Sub URLlauncher()

[bookmark: _Toc55977535][bookmark: _Toc164353373]Turn URL or email address into a live link
Click anywhere in a URL or email address and run this macro. It selects (only) the URL or email address, and creates it as a hyperlink.

Sub URLlink()

[bookmark: _Toc55977536][bookmark: _Toc164353374]URLs to active links
This macro finds all the URLs in the current file and makes them active links, i.e. clickable.

Sub URLlinker()

[bookmark: _Toc55977537][bookmark: _Toc164353375]Reduce the text extent of an active link
If the text before was:

	This is explained in Post-Brexit Funding for Nations, Regions and Local Areas.

If you now select “Post-Brexit” and run the macro, it becomes:

	This is explained in Post-Brexit Funding for Nations, Regions and Local Areas.

Or if you had selected “Nations”, it would have given you:

	This is explained in Post-Brexit Funding for Nations, Regions and Local Areas.

Sub URLshrinker()

[bookmark: _Toc55977538][bookmark: _Toc164353376]Unlink all the URLs
This macro unlinks all the URLs in the selection of the whole file. If the link is, for example, Free macros, where the URL is hidden, then it converts this to:

	...for example, Free macros (http://www.archivepub.co.uk/macros.html) , where the URLis...

but the wording is no longer a clickable link.

But if the link is just the URL then just the URL is there as text.

There’s an option for making the text bold (which someone wanted), and you can remove the “http://” or “https://” part of the URL when displayed, viz. use:

remove1 = "http://"
remove2 = "https://"

Sub URLunlinker()

[bookmark: _Toc55977539][bookmark: _Toc164353377]Email addresses to active links
This macro finds all the email addresses in the current file and makes them active links, i.e. clickable.

Sub EmailLinker()

[bookmark: _Toc55977540][bookmark: _Toc164353378]Show all formatting or just paragraph marks
The heading says it all: I reckon it’s sometimes useful to be able to see the paragraph marks (especially if you suspect that there are some line breaks around), but putting all the formatting marks on is a bit too much – for me, it makes the text too difficult to read. This macro lets you toggle between showing all the formatting marks, just the paragraph marks and no marks at all.

If you want it to show both paragraph marks and tabs, change the first line to:

tabsToo = True

Sub ShowFormatting()

[bookmark: _Toc55977541][bookmark: _Toc164353379]Show various formatting marks and hide highlighting
This is similar to the previous macro, but you can select, from a list, which format marks you want to show, and you also have the option of hiding the highlighting. All you have to be able to do is add up! You get this menu:

	1 = show paragraphs
	2 = show spaces
	4 = show tabs
	8 = don't show highlighting
	16 = show hyphens
	32 = show bookmarks

So, if you just want spaces and paragraph marks, it’s 3 (2 + 1), and if you just want to show optional hyphens and tabs, it’s 20. If you want to be able to see the text more clearly, you can choose not to display the highlights, by adding 8 to your number. If you want them all, to save you adding them all up, just enter 99.

To return the display to normal (no formatting marks, and highlighting showing) either type 0 (zero) or just press <Enter>.

I was getting frustrated that I (almost) always want option 7 (but sometimes 1), so I’ve also added a feature so that I can specify a couple of favourite options.

myFavouriteOption_1 = 7
myFavouriteKey_1 = "/"
myFavouriteOption_2 = 1
myFavouriteKey_2 = "#"

I happen to use <Alt-/> to run the macro, so I’ve chosen the slash key to give my normal option (7) and the hash key for 1. So it’s just <Alt-/></><Enter> to switch on and <Alt-/><Enter> to switch off, or <Alt-/><#><Enter> when I only want to display the paragraph markers. You can, of course, choose different keys and different favourite options.

Sub ShowFormattingMenu()

[bookmark: _Toc55977542][bookmark: _Toc164353380]Show all text in a different font size
(Video: youtu.be/P-6VdmT2BbE)

This is useful where you suspect that some parts of a section of text might be in a slightly different font size. It’s quite difficult to tell sometimes, especially on things like punctuation.

Select the suspect section of text and the macro will assume that the correct size is that of the first word of the selected text. So, did you spot the rogue font sizes in the paragraph above? Here they are:

This is useful where you suspect that some parts of a section of text might be in a slightly different font size. It’s quite difficult to tell sometimes, especially on things like punctuation.

Sub HighlightNotThisSize()
[bookmark: _Toc55977543]
[bookmark: _Toc164353381]14 Editing – highlighting ____
Coloured highlighting (and in this I include the use of font colours) can provide another set of tools to aid the editor: you (or one of a number of macros) can mark bits of text in different colours with the colours having different significance. So, you need macros to allow you to easily add highlights of whatever colour, and then you need to be able to jump around the text, looking at the bits that are in different colours. Finally, you need the ability to get rid of the highlighting, either in a particular area of text, or selectively by colour – removing all the green highlighting, say, while leaving all the rest of the highlighting intact.

The following information, kindly provided by Robert Astle, will be helpful if you want to use different colours from the ones I have used in the following macros.

Highlight colour codes
[image: Graphical user interface, application

Description automatically generated]
	wdYellow
	wdBrightGreen
	wdTurquoise
	wdPink
	wdBlue

	
wdRed

	
wdDarkBlue
	
wdTeal
	
wdGreen
	
wdViolet

	
wdDarkRed
	
wdDarkYellow
	
wdGray50
	
wdGray25
	
wdBlack

Standard font colours
Font colours within macros seems to be a bit of a (multicoloured!) black art. We tried to offer the “Standard Colors” from the ribbon, but it’s not as easy as that! So below we give a few suggested colours, and you can pick and choose.

[image: Application

Description automatically generated with low confidence]

	Sub ColourPlus() – Original version
	Sub ColourPlus() – with “wdColor” prefixed to each of the Standard Colour names

	
Dim myCol(20)
myCol(0) = wdColorAutomatic
myCol(1) = wdColorRed
myCol(2) = wdColorBlue
myCol(3) = wdColorGreen
myCol(4) = wdColorOrange
myCol(5) = wdColorLime
myCol(6) = wdColorPlum
myCol(7) = wdColorSkyBlue
myCol(8) = wdColorPink
myCol(9) = wdColorBrightGreen
myCol(10) = wdColorGray25
myCol(11) = wdColorGray50
myColTotal = 11

	
Dim myCol(20)
myCol(0) = wdColorAutomatic
myCol(1) = wdColorDarkRed
myCol(2) = wdColorRed
myCol(3) = wdColorOrange
myCol(4) = wdColorYellow
myCol(5) = wdColorLightGreen
myCol(6) = wdColorGreen
myCol(7) = wdColorLightBlue
myCol(8) = wdColorBlue
myCol(9) = wdColorDarkBlue
myColTotal = 9

[bookmark: _Toc55977544][bookmark: _Toc164353382]Add and remove highlights (basic)
These should be self-explanatory – mark some text and apply or remove highlights. (These first macros are very basic, so you could easily ignore them because you can do it all with the more powerful and flexible macros: ‘Highlights – Pick any Colour!’ That said, I do find ‘Red Text On/Off’ very useful.)

The first of the macros below adds highlight in the colour that is currently showing under the highlight icon on the toolbar; the second shows that you can choose to have a macro that highlights in one specific colour; the other three are for removing highlighting – that which is selected, the whole file and just the current line.

(The extra line in the three HiLightOFF macros – currently commented out – can be added if you want the same macro to both remove any highlighting and return any coloured text to normal, black text.)

Sub HiLightON()

Sub HiLightTurquoise()

Sub HiLightOFF()

Sub HiLightOffALL()

Sub HiLightOffCurrentLine()

Finally a macro that can, perhaps, be called from a DoMacro command in FRedit. It will remove all highlighting, text coloration and underlining.

Sub ClearHighlightAndColour()

[bookmark: _Toc55977545][bookmark: _Toc164353383]Red text on/off
Red text is probably the most commonly used text font colour (as it’s the default colour that Word uses). This macro toggles the selected text between black (automatic) and red.

Sub ColourToggle()

[bookmark: _Toc55977546][bookmark: _Toc164353384]Highlighting – pick a colour!
If you want to use a number of different colours of highlighting then these macros might help.

Basically, you have two macros – Plus and Minus. You can attach them to an icon on the toolbar or give them a keyboard shortcut, as you like.

At its simplest level, if you select some text and run Plus, it highlights the text in yellow, while Minus removes any highlighting.

However, if you click Plus a second time, the highlight colour you have just applied changes from green to yellow; click it again, and it goes to turquoise etc, etc. In fact, clicking Plus and Minus will take you forwards and backwards through the list of possible colours.

However, the ‘list of colours’, doesn’t include all the colours that Word provides since some of them are virtually unusable for highlighting because they’re so dark that you can hardly read the text. There’s a list in the macro of the colours it uses, and you can fiddle around with it if you want to, adding or removing colours from the list.

If no text is selected when you run HighlightPlus, it selects – and therefore highlights – the current line , but if no text is selected when you run HighlightMinus, it removes the highlight from the current line.

(In what I just said about highlighting the current line, you can set the macro to highlight the current paragraph instead, by setting doParagraph = True at the beginning of the macro.)

Also, I’ve given HighlightMinus the extra facility that if the whole of the text is selected then it assumes you want to remove all the highlighting from the text (obviously!) but it also assumes that you want to remove any (a) font colouration, (b) all underlining, (c) any strike-through. (This is to prepare files ready to send back to my clients.)

If you don’t want any of (a)–(c) then you can change the options to False:

colourOffToo = True
uLineOffToo = True
strikeThroughToo = True

Colour choice: The list of colours is set in the first few lines. You can have any colours you like, in any order you wish, though obviously you want the same list of colours for HighlightMinus as for HighlightPlus. To see how to change them, see under ‘Text Fonts’.

Keystrokes: Thinking of Plus and Minus, I use Ctrl-Alt-NumPlus and Ctrl-Atl-NumMinus – the plus and minus on the numeric keypad being easy to get to, and if you’re selecting a colour with Plus, and go too far, you can go back up through the list with Minus.

Sub HighlightPlus()

Sub HighlightMinus()

[bookmark: _Toc164353385]Highlighting – pick a colour (II)
Here’s an alternative approach to adding different colours of highlighting. You have one macro for each of the different colours of highlighting you might want.

But surely that means learning a different keystroke for each macro! Well, yes, but you can use two-stroke keystrokes. For example:

<Alt-H>,<G> for bright green
<Alt-H>,<Y> for yellow
<Alt-H>,<T> for turquoise
etc.

I’ve just put two examples on the website, but I’m sure you can make more by copy and paste, and then change the macro names and the colour names.

[bookmark: _Hlk161395054]The macro (obviously) highlights the selected text, but it can also use whole-word selecting: Click somewhere inside the first word, hold down <Shift> and click somewhere in the final word, then run the macro.

Also, if no text is selected, it highlights the current word. However, you can change the macro’ and make it select the current paragraph by default:

' defaultSelect = "word"
defaultSelect = "para"
[bookmark: _Hlk161393179]

Sub HighlightYellow()

Sub HighlightBrightGreen()
[bookmark: _Toc55977547][bookmark: _Toc164353386]Text font colour – pick any colour!
There are two equivalent macros that do exactly the same for text font colour, although the range of colours available is somewhat wider than for highlighting. However, I don’t use font colouring much, so I just use four colours:

Dim myCol(20)
myCol(0) = wdColorAutomatic
myCol(1) = wdColorRed
myCol(2) = wdColorBlue
myCol(3) = wdColorPink
myCol(4) = wdColorBrightGreen
myColTotal = 4

Keystrokes: Again, I use plus and minus on the numeric keypad, but with Shift-Alt instead of Ctrl-Alt, so that’s not too difficult remember.

Here are the four macros:

Sub ColourPlus()

Sub ColourMinus()

[bookmark: _Toc55977548][bookmark: _Toc164353387]Remove all highlight/colouration of current colour
This macro will remove all highlighting and text colouration, of one specific colour only. It senses what is at the cursor and removes that colour.

N.B. This macro removes the colouration of ALL text in the selected colour, so if any styles have a text colour as part of their definition, they will be changed to black.

Sub UnHighlightAndColour()

[bookmark: _Toc55977549][bookmark: _Toc164353388]Remove all highlighting (and colouring)
This removes highlighting and font colours (optional), including in foot/endnotes.

Sub HighlightOffIncNotes()
[bookmark: _Toc55977550][bookmark: _Toc164353389]Remove all highlighting except...
The idea here is that you’ve used lots of different colours of highlighting in a text and you want to remove them all except one particular colour, say yellow, because that carries some special significance, maybe for the typesetters. This macro does that. Indeed, you can also use it to maintain two specific colours (named in the first lines of the macro. (Make the second one keepColour2 = 0 if you only want to keep the one colour.)

This macro comes in two halves. That’s because removing highlighting often generates loads of track changes: ‘Formatted: Not Highlight’. So these track changes are then accepted.

Sub UnHighlightExcept()

[bookmark: _Toc55977551][bookmark: _Toc164353390]Remove all highlighting and colouration but not on program text
I use highlighting and colouration while editing, but I need to remove it before the author sees the edited text. However, for one job, the author had used coloured fonts and highlighting to draw attention to various things in the computer program listings within the text.

This macro removes all the font colouration and highlighting, but not if the text font is Courier New (the font used for the listings).

Sub SelectiveUnColourUnHighlight()

[bookmark: _Toc55977552][bookmark: _Toc164353391]Fixed spaces (and tabs) visible
(These two macros may well be superseded by the following one.)

It’s sometimes useful to be able to see at a glance whether spaces are ordinary or fixed. This macro switches this highlighting on and off each time you run it.

The highlight colour is set in the first line – adjust to taste.

(The HighlightSame macro now perhaps makes this redundant. You select the space (or tab) and use HighlightPlus to add the highlight colour you want and then run HighlightSame which makes all the hard spaces (or tabs) the same highlight colour.)

Sub ShowFixedSpaces()

You can, of course, do the same thing in order to switch highlighted tabs on and off:

Sub ShowTabs()

[bookmark: _Toc55977553][bookmark: _Toc164353392]Highlight same text
This macro allows you to quickly highlight (or unhighlight) all occurrences of a word or phrase or symbol/punctuation mark. It can either use your preselected colours of highlighting, or, if you use HighlightPlus and/or HighlightMinus, it will use the colour you’ve just used.

The preselected colours are set at the beginning of the macro:

nonTextColour = wdGray25
textColour = wdBrightGreen
' colour for thin spaces
otherColour = wdYellow

– Click in a word and run the macro, and that word will be highlighted in textColour throughout the text. (But clicking in, say, ‘the’ will not highlight ‘other’ or ‘theatre’.)

Run the macro again, and all occurrences of ‘the’ will be unhighlighted.

– Click to the left of, say, an endash and run the macro, and all en dashes will be highlighted in nonTextColour.

Run the macro again, and all en dashes will be unhighlighted.

– You can use it to highlight a phrase, or a part of a word: select the required text and highlight it with HighlightPlus and/or HighlightMinus, and then running HighlightSame will highlight all occurrences of that text in that same colour.
So this last feature can also be used if you want to highlight a word, but in a colour other than textColour, i.e. select the word, highlight it in your chosen colour, then run HighlightSame.

I use it most often to make the thin spaces in a technical document easily visible:

y = ax2 + bx + c

I can see immediately that a couple of the spaces are ordinary spaces, not thin ones.

(The macro should work with any non-alpha character, such as non-breaking hyphens and spaces, quotation marks, tabs etc. However, I did have to put in a fiddle to make it work with tabs and non-breaking hyphens, so if anything else you try doesn’t work, please let me know.)

Also now available is a macro that does the same for text colour and/or highlighting: HighlightAndColourSame

Sub HighlightSame()

Sub HighlightAndColourSame()

[bookmark: _Toc164353393][bookmark: _Toc55977554]Font colour same text
This macro allows you to quickly font colour (or un-font-colour) all occurrences of a word or phrase. It can either use (a) the existing font colour (b) your preselected colour, or (c) if you have just used ColourPlus and/or ColourMinus, it will use that colour.

The preselected colour it uses is set at the beginning of the macro:

textColour = wdColorBlue

– Click in a word and run the macro, and that word will be highlighted in textColour throughout the text. (But clicking in, say, ‘the’ will not highlight ‘other’ or ‘theatre’.)

Run the macro again, and all occurrences of ‘the’ will be unhighlighted.

– You can use it to colour a phrase, or a part of a word: select the required text and colour it with ColourPlus and/or ColourMinus, and then running FontColourSame will highlight all occurrences of that text in that same colour.
So this last feature can also be used if you want to highlight a word, but in a colour other than textColour, i.e. select the word, highlight it in your chosen colour, then run FontColourSame.

Sub FontColourSame()

[bookmark: _Toc164353394]Remove highlight from this word
Removes highlight from all occurrences of the word at the cursor.

Sub HighlightOffWord()

[bookmark: _Toc55977555][bookmark: _Toc164353395]List all highlight colours used
For one application, I wanted to know which different colours of highlighting I’d used. This macro lists all the colours that are used in the current file:

BrightGreen
DarkYellow
Gray25
Gray50
Green
Pink
Red
Turquoise
Yellow

Sub HighlightLister()

[bookmark: _Toc55977556][bookmark: _Toc164353396]List all highlights used
If you want to use a highlight in a file and you want it to be a unique colour then I thought it would be helpful to list which colours have been used in the file so far, and more importantly which it does not have. This macro does so. As you see, it also shows you the colours:

		BrightGreen
		Gray25
		Gray50
		Pink
		Red
		Turquoise
		Yellow
Blue
DarkBlue
DarkRed
DarkYellow
Green
Teal
Violet

So it shows you all the available colours (bottom) as well as those you have used (top).

Sub HighlightListerDeLuxe()

[bookmark: _Toc55977557][bookmark: _Toc164353397]Not highlight but background colour
Sometimes you get a file that looks as if it has used a highlight, but when you try to remove the highlight, it won’t go. This might be because it’s not actually highlighting but a change of background colour. There is a way of removing this (W2007/2010) by using Home–Theme Colors–No Color. However, weirdly, this only works provided that the text you select is within a single paragraph. If you select an area that goes over a paragraph end, the background colour remains untouched!

I’ve had a play with macros, and here’s a (deceptively simple) macro that seems to do it:

Sub BackgroundColourOff()

If you select text within one paragraph, it removes the background from just that text. If you select an area of text that includes a paragraph end, the macro has to mess about selecting each of the paragraphs in turn, deselecting the paragraph end, and only then can it remove the background colour. Weird, but it was the only way I could get it to work after trying a range of different techniques.

However, I noticed that this was written in 2011, so I have done an updated version, BackgroundColourAllOff.

If you try this and find that it doesn’t work (Word has a variety of ways of applying backgounds!) then please send me a sample file with your type of background, so that I can test it. Thanks.

[Later: I can confirm that this doesn’t work on some files. If so, you’ll have to use BackgroundColourOff, which may be slow on big files. Please use the 2020 version.]

Sub BackgroundColourAllOff()

You could also try:

PatternClear [13.03.14] – Remove shading and other funny colours!

[bookmark: _Toc55977558][bookmark: _Toc164353398]Highlight punctuation issues
This macro started when someone asked for a macro to highlight where some text in italic (e.g. the title of a book) is followed by a comma but the comma is also italic, when it should have been roman. Someone else pointed out that three book titles in a row probably had italic commas, but they too should have been roman. Then someone else added that a similar problem to the commas occurred with parentheses, colons, semicolons etc. And I added that it would be useful in a list that had bold headwords with colons and roman text to be able to highlight where the colons were bold (and the client wanted roman) or vice versa.

So this macro aims (says he, hopefully!) to highlight all of the above. However, at the beginning of the macro is a list of the various features so that you can switch them off (change ‘True’ into ‘False’) or change the colour used for each feature to your own favourite colour.

Sub PunctuationFormatChecker()

[bookmark: _Toc55977559][bookmark: _Toc164353399]Highlight punctuation issues (2)
Similar to the one above, this checks a wider range of issues.

I tested it out on a virtually completed PDF-on-paper proofread, and it found a couple of rogue colons, plus quite a number of italic commas I’d missed. It really appealed to my obsessiveness at finding mistakes, because it found some really obscure mistakes, some in the tiny writing. (I pity the poor person who has to implement my changes – one table has 45 very similar lines, each with the second comma correctly roman, but the first was incorrectly italic.)

The macro checks bold/italic colons following headwords:

Headword – or words: A word that needs to be defined.
Headword – or words: A word that needs to be defined.
Headword – or words: A word that needs to be defined.
Headword – or words: A word that needs to be defined.

You can specify independently whether colons should/shouldn’t be bold/italic.

It also looks at italic commas, using various tests. Then if it’s reasonably sure it’s a rogue italic comma it highlights it in one colour, but if it’s less certain, it highlights it in a lighter colour.

If anyone can think of any other punctuation formatting nuances you’d like it to check – or indeed any other kind of difficult-to-spot-by-eye (easy-to-miss-by-eye) errors, do please let me know.

Similar type of macro: ParagraphEndChecker alerts you to any paragraphs that don’t have a terminal punctuation mark – so easy to miss.

Sub HighlightOddPunctuationFormat()
[bookmark: _Toc55977560][bookmark: _Toc164353400]Highlight roman punctuation following italic text
Sometimes, you might want the punctuation that follows some italic text to be italic also, e.g. “Pay attention!”, he said. (I’m not here to argue typography; I just provide the tools!) So this macro will highlight roman punctuation that occurs after italic text, i.e. “Pay attention!”, he said.

Sub RomanPunctuationHighlight()

[bookmark: _Toc55977561][bookmark: _Toc164353401]Highlight/colour all the words/phrases in a list
If you have a number of different words or phrases that you want highlighted throughout a text. Simply create the list and highlight and/or font colour each item in whatever colour(s) you fancy. This could have a range of applications, including drawing attention to weasel words, jargon, management speak etc.

some people
it is said
out of the box
at this point in time
currently
going forward

When you run the macro, it finds every occurrence of each of the words/phrases and adds the relevant highlighting and/or font colour.

To operate it, create the list as above in a separate file. Save the file with any name you like, as long as “list” (in any case) occurs somewhere within the filename (e.g. ‘MyLiStGood’.)

You can run the macro with or without matching the case and with/without specifying whole words only. At the beginning of the macro is:

doWholeWordsOnly = True
doMatchCase = True

Set these as True or False, according to the application. (Remember that Word’s ‘Whole word only’ only works when you F&R a single word, not a phrase.)

If you put a ‘#’ on one line, e.g.

some people
it is said
#
out of the box
at this point in time
currently
going forward

it will do the first two, but then it will stop when it gets to the hash, and ignore the rest of the list.

Summary of instructions:
– Open a new file, type in a list of words/phrases, colouring and/or highlighting each of them as you like.
Save this Word file as, say “MyWordList”.

– When you want to run the macro, all you do is make sure that “MyWordList” is open on screen, open the file you want to highlight/colour and run the macro.

So to operate the macro, you need:
– Two open files: your word list + the text you want to highlight, but make sure that you put the cursor in the text you want to highlight, not in the word list. Then run the macro.

Extra feature
Even if your word list is a ProperNounAlyse list, it will still work, highlighting/font colouring with the colours in the list, e.g.

 1 = 	Analyses . . . 3	= A
* 	Analysing . . . 1
 1 = 	Analysis . . . 22	= A

* 	Analyzing . . . 1

 8 = 	Archaeology . . . 24	= H

 8 = 	Archeology . . . 2	= H

* 	Better . . . 1

 	Bonn . . . 1	= G
 	Bonnie . . . 1	= G

Sub HighlightWordList()

[bookmark: _Toc55977562][bookmark: _Toc164353402]Highlight all the edits in a text
You can use CHangeNext and ChangePrevious to jump about between the edits in a text, but if you just want to see clearly where there are some edits in the text, then this macro highlights all the edits.

Sub RevisionHighlight()

[bookmark: _Toc55977563][bookmark: _Toc164353403]Adding borders to text
(Video: youtu.be/2PG7n5MCMCo)

Someone asked if it was possible to add borders to specific words or phrases by using find and replace. They wanted to be able to do something like this:

e.g.Video about macros narrated by Paul Beverley

I tried but I couldn’t find any way to do this directly using find and replace. What I worked out instead is that you can specify the text to be ‘bordered’ by applying a specific combination of attributes that won’t appear anywhere else in the document, and then use a macro to convert those specific attributes to borders (of various shapes, styles and colours). I chose underline plus various colours of highlight to represent the different border styles.

Then you can use FRedit to apply the underline + highlight. So to achieve the bordering above, I’d use:

macros|^&
Paul Beverley|^&

and of course, since FRedit can run macros, you could do it all at one fell swoop:

macros|^&
Paul Beverley|^&
DoMacro|BordersAddToText

The code in the macro converts different highlight colours to various different border styles:

[bookmark: _Hlk59294549]From Word 2007 onwards, the functionality of InstantFind is probably redundant because of the more advanced find facilities now available. However, the FindFwd, FindBack, FindFwdCase and FindBackCase may still be very useful. Also, if you crave being able to jump advanced F&R dialog, try the FindAdvanced macro. When working with text, you want to be able to move around it, looking at various bits, checking them and changing them, so in this section there are tools to allow you to jump instantly to another heading of this.

I’ve deliberately chosen a range of different line style, thicknesses and colours, but you can change them, if you like.

Within the macro, you’ll see a some lines of computer code where the links are established. I think they are reasonably self-explanatory. So the link turquoise −> ‘blue 150pt single border’is established with:

 Case wdTurquoise:
 With Options
 .DefaultBorderLineStyle = wdLineStyleSingle
 .DefaultBorderLineWidth = wdLineWidth150pt
 .DefaultBorderColor = wdColorBlue
 End With

And for light gray −> ‘red 225pt dotted border’ there is:

 Case wdGray25:
 With Options
 .DefaultBorderLineStyle = wdLineStyleDot
 .DefaultBorderLineWidth = wdLineWidth225pt
 .DefaultBorderColor = wdColorRed
 End With

You can play with these, and the others, to your heart’s content.

Sub BordersAddToText()

[bookmark: _Toc55977564][bookmark: _Toc164353404]Removing borders from text
This macro provides a way to remove borders from bits of the text. If you select an area, it will remove the borders only from that bit of text. If no text is selected, it will assume that you want to remove the borders from the whole file – though it will ask for confirmation before doing so.

Sub BordersAllOff()

[bookmark: _Toc55977565][bookmark: _Toc164353405]Splitting and joining paragraphs
Suppose you have some dialogue:

“I don’t think that was a concern back then.” Katja said.
Wim said.
“I was not expecting that.” They all stared...

and you want:

“I don’t think that was a concern back then.” Katja said.
Wim said. “I was not expecting that.”
They all stared...

Simple! Click in ‘said’ (the one I’ve underlined for identification) and run the macro. Click in ‘that’ (as underlined) and run the macro.

In other words, if you click in the last word on the line, the macro pulls the line below it up, to make it part of the same paragraph (and adds a space, of course). Then if you click in a word in the the middle of a line, the macro splits the paragraph (and deletes the stray space).

Sub ParaSplitJoin()

[bookmark: _Toc55977566]
[bookmark: _Toc164353406]15 Editing – navigation ____
(From Word 2007 onwards, the functionality of InstantFind is probably redundant because of the more advanced find facilities now available. However, the FindFwd, FindBack, FindFwdCase and FindBackCase may still be very useful. Also, if you crave being able to jump straight to the old-fashioned advanced F&R dialog, try the FindAdvanced macro.)

When working with text, you want to be able to move around it, looking at various bits, checking them and changing them, so in this section there are tools to allow you to jump instantly to another heading of the same type, to another occurrence of the selected text, to another comment – plus a whole load of other ways of jumping around the text. I find that using these speeds me up considerably.

(And the section above gave you tools to allow you to jump around among the highlighting.)

[bookmark: _Toc164353407]Navigation pane customization
I was asked if it was possible, in a macro, to set the width of the navigation pane. It is, but you can customize it in various ways – see below.

Sub NavPaneWidth()

[bookmark: _Toc164353408][bookmark: _Hlk61086620]Open navigation pane your size and position
Word’s navigation pane can be placed in different positions and at different sizes. This macro switches the pane on and off in the position/size you want.

To help you decide on a suitable size, you can change doSetUp = False into doSetUp = True, then open the navigation pane at a size you like, then run the macro and it will tell you the current height and width of the pane. You can then put whatever numbers you want in the macro, and change back to doSetUp = False.

[bookmark: _Hlk61087299]When putting the pane in different places (here offered are left, right and floating – there are others), you can only specify height of the floating version of the pane.

Sub NavPaneCustomize()

[bookmark: _Toc55977567][bookmark: _Toc164353409]Temporary bookmarks
Before you start navigating around, it’s helpful to leave a temporary bookmark behind, so that you can quickly get back to where you started. So there’s a macro to place a temporary bookmark at the cursor, and then one that jumps you back to your temporary bookmark.

There’s also one to clear the temporary bookmark if you’re worried about sending off a file that has a stray bookmark in it.

But there is also a macro that uses the temporary bookmark to make it easier to select a long section of text: Use BookmarkTempAdd to place a marker at one end of the section, then go up or down through the text, by whatever means, to find the other end. Place the cursor at the end and run BookmarkToCursorSelect to select from marker to cursor.

Note that InstantFindUp, InstantFindDown and InstantFindDownWild also lay down a temporary marker before dashing off to find what you’ve told them to find, but it’s a separate marker. So if you use BookmarkTempFind once, it will find the usual temporary marker, but then if you use it a second time, without moving the cursor, it realises it’s already at the first marker and will jump you to the InstantFind marker instead – so you don’t need to learn a new keystroke.

Sub BookmarkTempAdd()

Sub BookmarkTempFind()

Sub BookmarkTempClear()

Sub BookmarkToCursorSelect()

[bookmark: _Toc55977568][bookmark: _Toc164353410]Instant find
“Super-Searching 1” (9:52) https://youtu.be/EJSB13x8QMU
(Word’s own search facilities, as a background to...)

“Super-Searching 2” (9:16) https://youtu.be/gTX6Z3uWp8k
WildcardLoader simple use

“Super-Searching 3” (6:19) https://youtu.be/o50lMd7LUtA
WildcardLoader advanced use

“Super-Searching 4” (7:49) https://youtu.be/m4gVuqrl83w
More about WildcardLoader

As an editor, you want to be able to move around the text looking for things, quickly and easily. For example, you’re reading through the text, and you read:

‘Step 1: Put the cat out’

and you think to yourself, ‘Hang on, did the lists earlier in the text have a colon after the number or not – and were they separated with a space or a tab?’ So, you want to be able to quickly look back – but how far back was it, and will you be able to find it if you rely on scrolling back and scanning by eye?

Using the macros below, there’s a quick and easy way: (You can use whatever keystrokes you like, but for the sake of the explanation, let’s assume you are using my keystroke suggestions.)

Click in the word ‘Step’ and press Ctrl-Shift-Alt-Up to run InstantFindUp. This loads ‘Step’ into the F&R, and jumps up to the previous occurrence. (If you had done Ctrl-Shift-Alt-Down, it would have run InstantFindDown and jumped on to the next occurrence.)

(By default, the macro assumes that you’re looking for the single word at the cursor, so if you want, say, to look for ‘Step 1’, then just select it before running the macro.)

Now that the F&R is loaded, Alt-Left (FindBack) and Alt-Right (FindFwd) will jump you to the previous and the next occurrence of ‘Step’, so you can go up and down each ‘Step’ to your heart’s content.

But then you see that it’s finding ‘step’ as well as ‘Step’. Bother!

No worries! We can soon ‘control’ that. Pressing Ctrl-Alt-Left (and -Right), will jump you through case sensitively, so that it will take you through the occurrences of ‘Step’, but ignore ‘step’. (Word’s own Ctrl-PageUp and Ctrl-Page-Down also jump you from one occurrence to the next.)

New feature: If the word you’re looking for is, say, ‘jump’ and you don’t want it to find ‘jumped’, ‘jumps’ or ‘jumper’, then just add a wildcard ‘>’, and select ‘jump>’ and then when you run InstantFindDown(Up), and it will see the angle bracket and switch to wildcard mode and only find ‘jump’ as a single word. OK, I admit that it’ll still find ‘longjump’, but you could also add a ‘<’, so search for: ‘<jump>’. (But you could alternatively use the macro FindDownWild, below.)

(There’s more to come, but just try these and get used to them before memorising more keystrokes.)

I also find it useful to instantly find the selected text by first jumping to the top of the document and then searching downwards for it – that’s InstantFindTop.

Someone asked to do the opposite: first jump to the bottom of the document and then search upwards for it – that’s InstantFindBottom.

New feature: When you go off searching for things, you can sometimes lose track of where you were in the document when you decided to search for something. I’ve therefore made it so that you can use my bookmarking macros. So when you run InstantFindDown(Up) it will leave behind a bookmark, so you can then get back to this starting point by using BookmarkTempFind.

However, this annoys me if I search for something in one of the files I regularly access but may not actually have edited, such as this file you’re reading now(!). If the macro adds a bookmark, then when I try to close the file, it will ask if I want to save it. So I have to think, “Have I actually made any changes to this file or was I just searching for something?” So, even if, at the top of the macro, you’ve set addBookmark = True, it will NOT add a bookmark if the current file is one of these named files:

butNotTheseFiles = "zzSwitchList,ComputerTools4Eds,TheMacros,5_Library"

You can obviously add to, or subtract from, this list the filenames of the files you search regularly.

Sub InstantFindDown()

Sub InstantFindUp()

Sub InstantFindTop()

Sub InstantFindBottom()

Sub FindFwd()

Sub FindBack()

FindFwd will find the next occurrence of the search text in the main text or in the footnotes or in the endnotes or in the comments. However, one editor wanted FindFwd to search to the end of the text and then, if nothing was found, jump into the notes (if there are any, of either type) and from there into the comments.

I started using it, to replace FindFwd, but it didn’t suit the way I work – I like to hear the ‘bong’ to tell me that it has reached the end of the text and can find anything, rather then jumping unannounced into the notes. So I’m sticking to FindFwd – you have the option.

Sub FindFwdAll()

And I’ve realised that, for DocAlyse, it’s useful to be able to ‘find down’, but with wildcards switched on. This is so that you can select, for example, ‘[a-zA-Z]@, [a-zA-Z]@, and’ in the DocAlyse summary to search through the text for serial commas. So I’ve added another one:

Sub InstantFindDownWild()

Finally, being a totally nutty speed-freak, I decided it would be helpful to be able to jump up and down, from word to (the same) word, but without losing the previous item that I was trying to find. So, say I was looking for the word FRedit, I’d use InstantFindDown, (or Up) and then FindFwd and FindBack; but then FRedit is mentioned a lot in this book (currently over 300 times!). So then if I decided it was near the earlier reference to ‘speed-freak’, I could select that term and use InstantJumpUp to move to it, without losing ‘FRedit’ from the Find function.

Sub InstantJumpUp()

Sub InstantJumpDown()

[bookmark: _Toc55977569][bookmark: _Toc164353411]Instant find – case sensitive
The next pair of macros (referred to above) improve on Word’s jumping to the next and previous find. By holding the Ctrl key down – i.e. Ctrl-Alt-Right and Ctrl-Alt-Left (assuming you use the same shortcuts as I do) – it only finds matches that are exactly the same case as the Find text.

Sub FindFwdCase()

Sub FindBackCase()

[bookmark: _Toc55977570][bookmark: _Toc164353412]Instant replace
Working along the same lines as the macros above, once you’ve got used to skipping around the text with Find, why not speed up the replacing too?

There are two macros designed for this. The first (which I put on Ctrl-Alt-Shift-Right, in line with Alt-Right being a forward Find) simulates the Replace action of the normal F&R dialogue box (which you still have to set up in F&R dialogue box as normal†). So you click Alt-Right to take you through until you find an occurrence that does need replacing, and then click Ctrl-Alt-Shift-Right to change it, and jump to the next occurrence.

But what’s the point?! With the normal F&R dialogue box, pressing the F key finds the next, and pressing the R key replaces that occurrence and finds the next, so what do you gain?

First of all you gain from the fact that you are ‘in the text’, i.e. while you are doing this selective F&R, you can easily stop along the way and change something else that catches your eye without going in and out of the F&R dialogue box. But the second reason makes learning a new keystroke much more worthwhile.

The second of the two macros below does the replace, but it does not move you on to the next occurrence. This means that you can stick around and see exactly what effect the Replace has had – i.e. you can double-check that you have set up the F&R properly – especially useful if the F&R is a wildcard one. After all, the next occurrence is only an Alt-Right click away.

(†N.B. To set up the Find and the Replace, you could use PrepareToReplaceDown. That’s fine, but if you do it ‘manually’, then after you’ve typed in the Find text and the Replace text, you must then click ‘Find Next’, otherwise the F&R box ‘forgets’ the text you’ve just typed in. Grr!)

Sub FindReplaceGo()

Sub FindReplaceStay()

[bookmark: _Toc55977571][bookmark: _Toc164353413]Instant find clipboard
And another macro that’s useful is where you’ve copied (<Ctrl-C>) a word or phrase in one document and want to find it in another. This macro simply looks down through the current document and jumps straight to the first occurrence it can find of whatever is stored in the clipboard.

Sub FindClip()

If I’m constantly flipping back and forth, say to find references in a list in a separate file, I find it useful also to have a version that jumps to the top of the file first, and then looks for the contents of the clipboard – i.e. it’s the same macro as the one above, but with the addition of the first line:

Sub FindClipTop()
[bookmark: _Toc55977572][bookmark: _Toc164353414]Clear odd find conditions
If you’re using a range of different (perhaps clever) find formats, you sometimes find that a simple find, or FindFwd/Back won’t find things that you *know* are there! This may be because some parameter has been set in the Find function. This macro therefore ‘cleans down’ all the ‘funny’ Find parameters.

Sub FindResetParameters()
[bookmark: _Toc164353415]Instant find particular formats
(N.B. This is very similar in functionality to FindStyle (below), which I created after these macros, but forgetting that they were available! And, I prefer the way that FindStyle functions.)

If you’ve discovered the huge speed-up value of the InstantFind macros, then you might also like InstantFindFormat.

The idea started when I noticed in a book that I was reading that the note numbers (which are not electronically linked notes, but simple subscripted numbers) weren’t sequential, so I wanted to be able to jump from one superscripted number to the next (and back again).

What InstantFindFormat does is (a) if some text is selected that has an attribute (so far just super/subscript, italic or bold), it will look for that exact text, but only when it occurs with that attribute. So, if you select a superscript ‘4’, it will only find any other superscript ‘4’ in the document. However, if nothing is selected, but the character to the right of the cursor is, say, a superscript ‘4’, then it will jump to the next (or previous) character – any character – that is superscripted. So that will jump me back and forth between all the superscripted numbers.

Or you might use it to jump between all the different items of bold text, or italic text, or perhaps all the subscripts (say if you want to check whether the subscripts are italic or not).

As with the normal InstantFind, you use this macro to set up the F&R (either up or down), and then you can use the normal FindFwd and FindBack to jump up and down through the various finds.

Sub InstantFindFormatDown()

Sub InstantFindFormatUp()
[bookmark: _Toc55977573][bookmark: _Toc164353416]Find in another file
(Video: youtu.be/BueNLL8uyKE and youtu.be/PB0hXA_1tRo and https://youtu.be/EaFJuKTbhGw and the most recent: https://youtu.be/sNUwH1ECFjU)

If you are working on two similar files, it can be very useful to be able to move from somewhere in the first file over to the equivalent place in the second file. For me, the main application is where someone has added some (hopefully tracked!) changes to one version of a file, and I want to update my master version of the file.

So if you select a bit of the text and run the macro, it will then look through the other file (in fact, it looks at all the other files currently open in Word) until it finds the exact same piece of text. And there you are, at the same place in the other file – almost instantaneously.

However, if that bit of text has been changed, even slightly, then obviously it won’t find it, so the macro just beeps at you and returns you to the first file, so that you can select a more suitable bit of text.

But you don’t actually have to select some text; you can also just put the cursor, say, in the middle of the line above the one you’re interested in comparing (because the target line has probably been changed in some way). Then, because no text is selected, the macro knows to use a different search technique: It selects the whole of the line and searches for that text in the other open file(s). This time, if it can’t find it, it progressively shaves bits off the ends of the search text until it eventually finds something that matches (or maybe not). (See note † below.)

However, it occurred to me that if, say, you’ve got a list of names or a references list, and all you want to do is search the other file for an individual word or name, it might be quicker to be able to put the cursor in that word, and not select it, and the macro would know to search just for that word, and not the whole line, as mentioned above. So if you want: “no text selected” to mean “just look for a word” then, at the start of the macro, set:

selectCurrentWord = True

but if you want: “no text selected” to mean “look for the whole line”, then, at the start of the macro, set:

selectCurrentWord = False

Another selection feature now available is if you set, at the start of the macro:

wholeWordsSelect = True

then if you select some text, it will round off the beginning and end of the selection to the nearest whole word.

Application idea: Suppose you’re working on, say, four different files that you want to compare – say A, B, C and D – then FindSamePlace, will search in the order A, B, C, D. However, if you use FindSamePlaceBack, it will search in the reverse order: D, C, B, A. So, if you are in file C then FindSamePlace will search in the order D −> A −> B, whereas FindSamePlaceBack will search in the order B −> A −> D.

(N.B. The order that these macros use when searching a set of more than two files is alphabetic on filename.)

†In case it helps your use of the macro, I’ll explain how it decides which bits to chop off. If the cursor is nearer to one end of the line than the other, it takes 10 characters (the number set by myStep, at the beginning of the macro) off the long end and tries again. When that end is shorter than the other, it takes some off the other end, so if it still can’t find this shorter text, it gets nearer and nearer to the words around the place where you put the cursor, eventually giving up when there are less than minLength characters.

(Recent upgrade feature: If you have a file open that has been created by MultiFileText or MultiFileWord then if you click in a line and run this macro, it loads up the relevant original file and then finds the same line, so that you can look at the context.)

(Another recent upgrade feature: If you have to work with lots of files open at once, but you don’t want the macro to go all the way round through all the files, there are two ‘exceptions’ methods, to make these macros ignore one or more of the files.

notThisFile = "zzSwitchList"
notThisFileEnd = "XX"

You can probably guess the idea for the first one. I always have my switch list file open, so I want this macro to ignore it. But if you made that line notThisFile = "zz", then it would skip past any file with ‘zz’ in its name.

The second one works by typing ‘XX’ right at the end of the files you don’t want it to search.)

(Yet another recent upgrade feature: If you have to work with lots of files open at once, but you ONLY want the macro search in certain files that have a common element in their filenames, say ‘_PB’, then here’s the line to change:

onlyLookInTheseFiles = ""

So change it to:

onlyLookInTheseFiles = "_PB"

and it will only searching in files such as ‘Chap_01_PB’, ‘Chap_02_PB’, ‘Chap_03_PB’, etc.

But don’t for get to change it back to:

onlyLookInTheseFiles = ""

when you’ve finished, otherwise it won’t find anything, if you don’t have any ‘_PB’ files!)

Sub FindSamePlace()

Sub FindSamePlaceBack()

[bookmark: _Toc55977574][bookmark: _Toc164353417]Find in context
(Video: youtu.be/P-6VdmT2BbE)

(Now superseded by MultiSearch, below.)
If you’re trying to quickly find a particular passage within a long text (such as this book), you ideally need some unique word. So if you wanted to find the macro mentioned above, it would be easy if you knew that it was called ‘FindSamePlace’. But what if you didn’t know the exact name?

This macro allows you to find up to three separate words (well, bits of text) that are near to each other. You specify the main word you’re looking for, and then one or two other words that should be somewhere nearby, and you can also specify the range (in terms of the number of words) over which you want it to look. In this case, as the previous macro is about searching for text in another file, we might try:

mainWord = "search"
nearWord1 = "other"
nearWord2 = "file"
distance = 40

The macro then searches the text (downwards from the current cursor position) until it finds the main word, ‘search’ (there are over a hundred of those in this book) and then looks to see whether both ‘other’ and ‘file’ occur within 40 words either side of ‘search’.

Another example would be if you were looking for a reference ‘John Smith’ but you weren’t sure if he appeared as ‘Smith, John’ or ‘John Smith’, ‘John Arthur Smith’ ‘Smith, J’ or ‘J Smith’. If so, you could use, say:

main = "Smith"
nearWord1 = "J"
nearWord2 = ""
distance = 3

(As you can see from this example, if you only want to link two words, not three, then just make one of the words "".)

N.B. Case sensitivity: If the word you specify is all lowercase then the macro searches case insensitively, but if it has at least one uppercase letter (e.g. ‘Smith’), then it will search case-sensitively.

So if you look for:

mainWord = "Smith"
nearWord1 = "j"
nearWord2 = ""

it would also find ‘Benjamin Smith’. Then...

mainWord = "smith"
nearWord1 = "j"
nearWord2 = ""

would find both ‘John was a smith’ or ‘A smith joins bits of metal’, but...

mainWord = "smith"
nearWord1 = "J"
nearWord2 = ""

would only find the first of those two examples.

And here’s another idea:

mainWord = "Jones"
nearWord1 = "199"
nearWord2 = ""
distance = 4

This would find various combinations of Harvard-type citations with or without commas, brackets, et als etc from any year in the 1990s.

Setup: As you’ll have realised, it would be a real pain if you had to keep going into Visual Basic to edit the macro every time you wanted to set up a new search. I have therefore used the same setup as for SpellAlyse, where if a Word file, called ‘zzSwitchList’ (or whatever you prefer), is open, it will look in there for, say,

mainWord = "Jones"
nearWord1 = "199"
nearWord2 = ""
distance = 4

These parameters will then will be used instead of the ones set within the macro itself.

I suggest that you copy and paste the four lines out of the macro and into your ‘zzSwitchList’ file, so that you get the exact spacing and (straight) quotation marks.

It doesn’t matter what else is in the ‘zzSwitchList’ file. Indeed, as you might have guessed from the name, this is the file that I use for the word lists for MultiSwitch (and also WordSwitch and CharacterSwitch) – so I have that one file open the whole time I’m using Word. And it also holds my SpellAlyse parameters.

Sub FindInProximity()

[bookmark: myTempMark2]To make this macro more flexible, I’ve written a macro whereby you can select some text (the obvious text is a reference or citation) and this new macro will take the first and last words of your selection as the mainWord and nearWord1 for FindInProximity then to search for. So if you have “Jo Bloggs and his colleagues in 1996 showed ...” and if the highlighting I’ve used here represents the area selected, then this macro sets up for you:

mainWord = "Bloggs"
nearWord1 = "1996"
nearWord2 = ""
distance = 12

And you can search it. The distance of “12” is set at the beginning of the new macro, but it is also offered to you when you run the macro: press Enter to accept this value, or type in a different value. If you want to search Bloggs in the 1990s, you can just select: “Jo Bloggs and his colleagues in 1996 showed ...”, i.e. don’t include the ‘6’.

If you’re having to search a lot of these, the other speed-up on offer is, at the start of the macro:

assumeWholeWords = False

If you change that to True, then you can quickly just select: “Jo Bloggs and his colleagues in 1996 showed ...”, i.e. anywhere in ‘Bloggs’ and anywhere in ‘1996’, and it will set up for Bloggs 1996.

Finally, getting away from references, if you need to search for anything with FindInProximity – say you want something about a macro that deals with comments – just type “macro comment” and select it and run this macro.

Sub FindInContextLoad()

[bookmark: _Toc164353418][bookmark: _Hlk104048212]Find combinations of texts
[bookmark: _Hlk104194795]N.B. To use this macro, you need to copy the following single line to the very top of the VBA area:
Private pbMultiSearch As String
(Video: https://youtu.be/wE8LyF44PZI)

The aim of this macro is to provide a flexible way of finding things, especially in longer documents. The idea is that you specify a search such as:

	highlight+track+macro

i.e. you might use this to search this present document for a macro that highlights every tracked change.

What the macro would do is work out which word (or phrase) occurs least often. Then it would find the first occurrence of that word downwards (or upwards for the complementary macro) and then check to see whether the other words/phrases also occur within a specified number of words before or after it.

(This number of words is set at beginning of the macro: myRange = 12)

Or maybe you might look for:

	smith+2014

This would obviously find an author-date citation, ‘Smith, 2014’ but it would also find ‘In 2014, Fred Jones, Simon Green and Burt Smith wrote...’

So that’s the AND function of this macro: you’re looking for ‘Smith’ AND ‘2014’, but the macro also has an OR function. For example:

[bookmark: _Hlk104049759]	red wine+german_french

This would look for ‘red wine’ with either ‘(F)rench’ or ‘(G)erman’ nearby. (The search is not case sensitive, but it can check capitals: see below.)

To operate the macro, you can type out your search criterion on a separate line, as above (but see below for an easier way of loading of the search). Then if the cursor is in the line containing the search criterion, and you can run either the up or the down search macro and it will recognise the ‘+’ sign and load up the search. You are then ready to move the cursor to the area or document you want to search and run the macro again, to do the actual search.

N.B. To search the text of the footnotes or endnotes in a document, just click in one of the notes.

When the macro finds its target it selects the area of text containing the required search items (or beeps if it can’t find a suitable match).

To move to the next (or previous) occurrence of these texts, simply run the macro again (or run its complement).

(Practical point: if the document contains linked URLs or links to other parts of the document, it might be that nothing is visibly selected. To find the text it that has located, hold down <Shift> and click <right> a few times to extend the selection, which should then become visible. N.B. the macro can get very confused by tables of contents, and may keep returning to the same place! In which case, move past the end of the table and try again.)

(Practical point II: It’s possible that the macro might baulk at text within a table [it won’t search any text in textboxes, sorry]. If so, please send me a sample text [and search criterion], and I’ll see if I can solve the problem.)

Checking capitals: The macro now has a form of optional case sensitivity. If you add an underline character at the very end of the search criterion, it will search case insensitively, but then will check that all of the individual uppercase characters in the criterion are echoed in the current find. For example:

	Smith+2014_

will not find, “John has worked as a wordsmith since 2014”.

A quicker way to build up your search criterion is to use the MultiSearchLoader macro. Select a phrase, or just click in the word you want to search, and the macro loads this text into the search criterion. If there is already some text in the criterion, it offers to combine this new text in a variety of ways:

[image: Graphical user interface, text, application

Description automatically generated]

So here it shows that we already have a criterion set up: ‘highlight+track’.

Either edit this text or just type in a new search criterion you want, or you have other five options, each set by pressing a single key, then Enter:

RESTART: This ignores the current criterion and starts with the word at the cursor (or the currently selected text).

[bookmark: _Toc55977575]AND: This adds a ‘+’ (AND) to the current criterion followed by the current text.

OR: This adds an underline ‘_’ (OR) to the current criterion followed by the current text.

Check Caps: This adds an underline character at the end of the criterion (or removes it if there already is one).

EDIT: This copies the text of the criterion into a suitable file where you can edit it yourself and then reload it.

If you have a switch list open (as used by MultiSwitch), the EDIT function can use that. If not, it will look for an open file that looks as if it has already been used to edit a criterion. If not, it opens a brand new document.

You can use whichever keys you like for each of the functions. Indeed, you can have alternative keys set up; these are displayed for you in the input window, e.g. as supplied, the AND function can be executed by typing either ‘2’ or ‘+’ and pressing Enter.

Here are the lines that created the above choice of keys for running this macro:

restartKeys = "1."
ANDkeys = "2+"
ORkeys = "3-/"
capsKeys = "6*"
editKeys = "0"

If you don’t have a numeric keypad, you might choose to use keys close to the main Enter key – your choice, entirely.

Sub MultiSearchLoader()

Sub MultiSearch()

Sub MultiSearchUp()

[bookmark: _Toc164353419]Find any of a set of searches
N.B. This macro is based on (yet another!) idea by Howard Silcock – Thanks, Howard!

(This is a 2014 macro and is probably now redundant in light of the macros above.)

This macro searches for <this text> OR <that phrase> OR <the other bit of text> – whichever comes next, starting from the current cursor position.

You have two macros, the first of which is used to set up the search, so you would run it and enter:

this text,that phrase,the other bit of text

or if you happen to want to search for a comma, you can enter:

this text|that, phrase|the other bit of text

The setup macro stores these search criteria in a variable in the file. Then each time you run the main searching macro, it reads this variable and executes the search, so you can use it over and over again without retyping.

For example, maybe you would want to look through some text to find when and where various people have been mentioned, so you might enter: Jones,Green,Smythe

The macro then looks for each of these three names as they occur.

Unfortunately, it will also find ‘wintergreen’, ‘greenwood’ etc. No problem, just use: Jones,$Green,Smythe. In other words, the $ says that this word should be searched case-sensitively.

But then it would still find ‘Greengrass’, so you decide you want to use a wildcard search. For that, you would use, say, Jones,~<Green>,Smythe. In other words, the tilde “~” (familiar to FRedit users) indicates that the following search pattern is to be wildcarded.

Or you might use: Jones|~<Green>|~Sm[iythe]{3,4} which will find Smith, Smyth, Smythe (and even Smtyh!), but note that, I’ve used ‘|’ and not comma as a separator because the wildcard search is Sm[iythe]{3,4}, which itself contains a comma!

I’m sure you’ll think of ways you can use this tool, but I can see one immediate use of the case sensitive function – searching for a commonly occurring word where it’s the exceptions that you want to find. So, for example, you could ignore ‘the’ by searching for: $The,$THE or maybe even use wildcard for it: ~The>,~THE> (remember that wildcard searches are always case sensitive).

N.B. Because each macro calls the other macro, it is important not to change the names of these macros. Well, if you do, you’ll also have to edit the place in the other macro so that it calls the macro by your new name. For example, instead of Call FindThisOrThat you’d change it to Call MyNewName.

Sub FindThisOrThat()

Sub FindThisOrThatSetUp()

[bookmark: _Toc55977576][bookmark: _Toc164353420]Copy text into the F&R box
Here’s the scenario: You’re working on a document and find, say, ‘Bloggs & Sons Ltd’, and you decide to use F&R to change it to something slightly different, say ‘Bloggs & Sons plc’.

To do this manually, you have to select the text, open the F&R window, paste the text into both Find and Replace, and make the necessary changes to the Replace version. However, with this macro, you simply select the text, press Ctrl-Alt-H (or whatever key you want to assign to it) and up pops the F&R window with the text already in both Find and Replace.

Sub PrepareToReplaceDown()

I also have a version that switches the track changes off as I start it up:

Sub PrepareToReplaceDownTCoff()

As it stands, this macro trims the final space off the selection. This is useful if you select a single word by double-clicking it, because you may not want the trailing space. However, if you prefer it to transfer exactly what you select into Find and Replace, then at the beginning of the macro, just use myText$ = Selection instead of myText$ = Trim(Selection).

You might want to allocate that macro to, say, Ctrl-Alt-H (cf. Ctrl-H for normal F&R) and then have another version (PrepareToReplaceFromTop) set to Ctrl-Alt-shift-H which picks up the selected text but, instead of starting the search from just after the selected text, it starts from the top.

Sub PrepareToReplaceFromTop()

Then if, like me, you want to leave a place-marker behind (I use ‘[[[’), the next macro leaves a marker and then goes to the top and does the F&R from there. Then you can jump back to your marker using the FindMyMarker macro.

Sub PrepareToReplaceWithMarker()

[bookmark: _Toc55977577][bookmark: _Toc164353421]Find within deleted text
Someone said they wanted to “search through the track changes”. What they meant was that they wanted to search through for text that they had deleted (but track changed).

This macro searches through deleted text within track changes, starting from the current cursor position.

It’s just a proof of concept really, i.e. it’s only a case-insensitive search at the moment, but I can refine it you’re interested.

Sub FindInDeletedText()

[bookmark: _Toc55977578][bookmark: _Toc164353422]Multi-purpose find
(Video: youtu.be/Jm3xUnpYcSo)

The idea of this macro is that one keystroke, Alt-F (or whatever you choose), allows you to find a range of different things. It does this in a number of ways, but many of them are done by setting up a wildcard find. Once that’s set up, you can use

– Type in a word or phrase and it uses the normal F&R to find it
– p17 searches for page 17.
– f17 (or n17) searches for footnote 17.
– e17 searches for endnote 17.
– c17 searches for comment 17.

If, when you press Alt-F, some text is selected it will display that text in the input box and, if you just press Enter, it will go and find it, but you can, of course, edit the text before pressing Enter, and also:

– a searches for acronyms: BBC, TTFN etc (see also ‘x’).
– B searches for BC/AD/CE/BCE.
– b searches for BC/AD/CE/BCE in small caps.
– d searches for dates of the form 13 Jan 2030.
– D searches for Dates of the form 13.6.09 or 1.6.2010
– e gets the existing text from Word’s Find box, so that you can change it in some way.
– E see under ‘z’ for zipcode.
– f searches by the font attribute(s) that have been applied to the text, e.g. superscript, bold, font size.
– h tries to work out which is the next heading, i.e., if it’s not Normal style, it searches by style; otherwise, it tries to go by whether it’s italic and/or bold and the font’s size, name and colour, but if that’s no good, it looks for a code symbol such as ‘<A>’.
– i searches for people with initials and surname, including full points (periods), e.g. J.L.B. Matekoni.
– I searches for people with initials and surname, without full points (periods), e.g. JLB Matekoni.
– m searches for email addresses.
– n searches for any number
– p searches for UK postcodes.
– s searches for section numbers, i.e. lines beginning with 2.3 or 14.9.1.1.
– u searches for units: mA, kg, cm, MN etc.
– w searches for web addresses.
– x expands an acronym, i.e. searches for words that might be the expansion of the acronym.
– X expands an acronym, but looks for uppercase or lowercase. However, for acronyms longer than three characters it only searches the first three, otherwise Word complains that the wildcard F&R is too complicated!
– y searches for years, e.g. 1066, 1948 or 2030.

– z searches for US zip codes (five-digit numbers).
– Z searches for Canadian zip (postal) codes (e.g. V9M 3T7).
– E searches for European postal codes of the form N-1234, or E 34568.

– numbers 1 to 5 find headings (paragraphs) that start with the same 1 to 5 characters, e.g.:
(a) If the line is “<A>Figure 2.3 Blah blah” then using 2 will find all <A> headings, while 1 finds any <A, <B, <Fig etc.
(b) If the line is “Figure 2.3 Blah blah” then using, say, 4 will find all headings (paragraphs) starting “Figu...”, but will ignore cases where, say, “However, in Figure 3.2 we can see...”

– (searches for (3.16), (12.2), e.g. equation numbers – and even ‘(2.4.1.7)’
– ‘-’ (a hyphen) searches for a word pair with or without spaces and/or hyphen/en dash. If you select ‘borehole’ or ‘bore hole’ or ‘bore-hole’ or ‘bore–hole’, it will find any/all of those combinations throughout the text.
However, as with HyphenSpaceWordCount, you don’t actually need to select any text; just put the cursor in the first word, and it will beep at you and ask you to confirm, “First word? bore” – just press Enter.
But then if you click in ‘borehole’, it will say, “First word? borehole”, so you just delete ‘hole’ (in the input box) and press Enter.

– Custom searches – there’s a section in the macro where I set up two-letter codes for words I often need to search for so, for example, if I type ‘se’ and press Return, it searches for ‘| Spelling Errors’ (which you’ll recognise, if you use SpellingErrorLister and SpellingErrorHighlighter). Look in the middle of the macro, and you’ll see:

If Len(myText) = 2 Then
 myCase = True
 Select Case myText
 Case "re": myText = "References^p": myCase = False
 Case "fi": myText = "Figure"
 Case "se": myText = "| Spelling Errors"
 Case "mm": myText = "Macro Menu"
 Case "ap": myText = "Appendix"
 End Select
End If

I’m sure you can add and subtract your own special searches. Note that I search for ‘references’ in any case, but the rest are searched case sensitively.

You can also use Word’s own special find features:
– A searches for All word forms, e.g. if it’s got ‘go’ it will find ‘going’, ‘gone’, ‘went’.
– W searches with the ‘Whole words’ feature enabled, so ‘the’ does not find ‘other’ or ‘thesis’.
– S searches with the ‘Sounds like’ feature enabled.

Note: When you are searching for some text, the macro searches downwards as you would expect. However, if it cannot find the searched-for text before the end of the file, it does not then jump to the top of the text and start searching from there. Instead, in beeps at you and then searches upwards from the current cursor position. I thought this was more useful, but do ask me for an up-and-over-the-top version if you prefer. In any case, if you hear a beep, but the cursor stays where it is then that text ain’t nowhere in the file. What’s more, before doing the search, the macro switches off all the special features: wildcards, match case, sounds like and whole words, so if it’s there, it’ll find it.

The macro also loads the text into the Find box of Word’s F&R, so if you then want to jump around the file looking at the various occurrences then, you can use the InstantFind macros above, as usual.

[bookmark: _Toc55981652][bookmark: _Toc55981750]Where was I?
If you are doing any of searches above and you add a ‘[’ at the end of the line then, before the macro goes off to wherever you want it to go, it leaves behind a ‘[[[’ as a marker so that you can then use the ‘[’ option to quickly and easily get back to where you started. (Or, if you find it easier, you can use FindMyMarker macro – a single keystroke to refind the ‘[[[’.)

[bookmark: _Toc55981653][bookmark: _Toc55981751]Make up your own F&R
One of the powers of this macro is that, for a specific job, you can add your own specific wildcard F&R. For example, someone wanted “a macro to change the note numbers in a list of endnotes from a full point (period) following by a space into no full point (period) and a tab”. So, if you use SmartFinder and press ‘.’, the Find and Replace boxes will be set up accordingly, and then you can use FindReplaceGo and/or FindReplaceStay to go through the notes one by one (or on autorepeat!) changing them all. (Or just use Ctrl-H once the wildcard F&R is set up.)

I think the format is reasonably straightforward:

 Case ".": myFind = "^13([0-9]{1,2}). ": myReplace = "^p\1^t"
 ' Full point (period) off note number

[bookmark: _Toc55981654][bookmark: _Toc55981752]Clearing up
After you have used some of the features such as the All word forms feature, other F&Rs may get a bit confused. So if you use the Customize Keyboard window to assign, say on Ctrl-Alt-F to the FindOptionsDialog command you can clear down all these special features to give yourself a ‘clean’ F&R (or use the FindAdvanced macro below).

Sub SmartFinder()

[bookmark: _Toc55977579][bookmark: _Toc164353423]Old-fashioned find for Word 2007/2010
Some users of Word 2007, 2010 and 2011 are saying that they just want to be able to do the equivalent of what they used to do in Word 2003 and earlier, before Word got ‘more clever’. That is, you want to call up what they now call the ‘advanced’ Find and Replace dialog.

I’ve now discovered that if you call up the Customize Keyboard dialogue box, click in the LH box on All Commands, and then in the RH box find EditFind, you can allocate that to a keystroke – say Alt-F – and you don’t even need a macro! (Or EditReplace for the full F&R function.)

And now I’ve found a command FindOptionsDialog (set a keystroke using the method of the previous paragraph) which brings up a window with just the various options you might want when searching.

I use a version that clears down all the ‘funny’ F&R options.

Sub FindAdvanced3()

[bookmark: _Toc55977580][bookmark: _Toc164353424]Versatile searching via wildcards
“Super-Searching 1” (9:52) https://youtu.be/EJSB13x8QMU
(Words own search facilities, as a background to...)

“Super-Searching 2” (9:16) https://youtu.be/gTX6Z3uWp8k
WildcardLoader simple use

“Super-Searching 3” (6:19) https://youtu.be/o50lMd7LUtA
WildcardLoader advanced use

“Super-Searching 4” (7:49) https://youtu.be/m4gVuqrl83w
More about WildcardLoader

Please don’t worry! You don’t need to learn wildcarding yourself – just use wildcard searches that other people have worked out. You can get some of them from the Resources tab on wordmacrotools.com.

WildcardLoader is a versatile macro with a number of features, but even if you use the first and most obvious facility, it will enable to you do more versatile and effective searching.

If you have a file with some wildcard searches in it, simply put the cursor in one of them, and WildcardLoader will load the search criterion into Word’s Find box and search for the first occurrence in that file. But then click in your target file and use FindFwd or FindBack to look through all the occurrences that the wildcard finds for you.

Find two words in proximity (i.e. in the same paragraph): If you have the two words you want to find, e.g. ‘According to Smith et al (2016)...’ then you simply click in ‘Smith’ and then Shift-click in ‘2016’, run the macro and it will take you straight to the next ‘Smith et al (2016)’ citation, or to the reference: Smith, P.Q., Jones T.A. & Benson, Z. (2016) How to blah, blah, etc.’ (Note, to set up the search, the words don’t have to be in the same paragraph – just click and shift-click any two words anywhere.)

The WC it generates (in case you are interested) is: [sS]mith[!^13]@2016. Because wildcard finds are case sensitive, it is offering to find the text with or without an initial capital. The [!^13]@] in the middle just means, ‘any text that is not a new paragraph, i.e. find the two words only if they occur in the same paragraph.

In the demo video, I search within the ‘Alice in Wonderland’ book for Alice and rabbit: [aA]lice[!^13]@[rR]abbit, so whether it’s ‘the rabbit’ or ‘the White Rabbit’, it will still find it.

However, note that it only finds ‘[aA]lice’ followed by ‘[rR]abbit’ in a given paragraph. But then you can tell the macro to switch it round for you: double-click any short word (or just select a couple of characters), run the macro, and it will know that you want it to do the switch to: [rR]abbit[!^13]@[aA]lice.

If you want to see what the current WC search is, just click in any blank paragraph, run the macro, and it will type out the search for you, like this:
[A-Z]{2,}
The final feature is, if you click in the middle of a paragraph that is not a WC search, it will respond by opening up an input box into which you can type or paste some text to be searched (it also picks up the words near your cursor, in case you want to use them).

[image: Rectangle

Description automatically generated]
The list of WC finds on the website starts as follow, but this macro, like FRedit and MultiSwitch, is a ‘content-free’ macro, i.e. you can give it any text you want.

acronym
[A-Z]{2,}
e.g. BBC

BC/AD/CE/BCE in caps
[ABC][DCE]{1,2}>
e.g BC/AD/CE/BCE in caps

BC/AD/CE/BCE in small caps
[abc][dce]{1,2}>
e.g. BC/AD/CE/BCE in small caps

[0-9]{1,2}^32[A-S][a-z]@^32[0-9]{2,4}
dates, e.g. 22 Sept 1948, 7 Nov 88

[0-9]{1,2}.[0-9]{1,2}.[0-9]{2,4}
dates, e.g. 22.09.48 or 22.09.1948

The fonts, colours and highlights are totally irrelevant! They are only there to help me quickly locate the particular WC I want – and, of course, at any stage, I can move the WCs around in the file.

[bookmark: _Hlk131166088]What I have done, however, is to put an example of the target text on the line immediately following the WC. So when I run the macro, it will select the first example it can find, i.e. on the next line. This encourages me that it is actually working.

Enjoy!

And if you want to save a wildcard find that you’ve just tried out, you can type it out with WildcardType, ready to put it in with your list of other wildcard finds. Place the cursor on a blank line and run the macro.

Another idea is that, for a given file you’re working on, say a whole book, you want to save some wildcard finds just for that book. So if you use WildcardLoader to, say, do a search for ‘Brown’ and ‘2016’, and you think you might want it again, or perhaps for a different year, run WildcardSave, and it will go to the top of the document, place a copy of the find there, show it to you and then, when you click ‘OK’, it will take you back to where you were in the text.

Sub WildcardLoader()

Sub WildcardType()

Sub WildcardSave()

[bookmark: _Toc164353425]Find highlighted text
Each time you run this macro (HighlightFindDown), it looks for the next piece of text that is highlighted.

However, if you want to only find text in a particular highlight colour then select a bit of text in that colour and run the macro from there.

And then the following macro (HighlightFindUp) does the same thing but upwards. So, if you are going down through the document looking at highlights using the first macro, and want to go back up and look at the previous, bit of highlighted text, run this macro instead.

You could, for example, assign the first macro above to Alt-PageDown and following one to Alt-PageUp.

Searching for any highlighted text is much quicker, so please be patient if you’re looking for a specific colour on long documents. Indeed, if it’s taking to long, the macro beeps and displays a counter, to reassure you that it’ll get there eventually. If you get bored, you can stop the macro with Ctrl-Break.

However, if you want to actually DO SOMETHING with the next bit of highlighted text then SelectNextHighlight will actually select the next bit of highlighted text, whereas HighlightFindDown leaves the cursor at the beginning of the highlighted text. And SelectPreviousHighlight does the reverse, of course.

Sub HighlightFindDown()

Sub HighlightFindUp()

Sub SelectNextHighlight()

Sub SelectPreviousHighlight()

[bookmark: _Toc55977581][bookmark: _Toc164353426]Find coloured text
This works in the same way as the previous macro but it finds text that is in a particular font colour, say red or blue or whatever. Each time you run the macro, it jumps to the next bit of text in your chosen colour. If no text is selected, it remembers the font colour you looked for last time and finds the next bit of text in that same colour.

If you want to find text in a different font colour, simply select a piece of text in the desired colour and it will look for the next bit of text in that colour.

The other way to change the text search colour is to select a piece of text that is black. The macro then jumps to the next piece of non-black text, and you can say ‘yes’ or ‘no’ according to whether this is the colour of text that you want to search for.

If, however, you click ‘Cancel’, it will assume that you want to look through all the sections of non-black text.

Sub FindColouredText()

Sub FindColouredTextUp()

[bookmark: _Toc55977582][bookmark: _Toc164353427]Jump from (heading) style to style
(This is an old pair of macros, and the macro that follows them might be considered to be an improvement on it.)

The next two macros allow you to move up and down through the text on the basis of the style. So, for example, you might want to look through the various headings in ‘Heading 1’ style. Just place the cursor anywhere on a line in the given style and run the appropriate macro – up or down.

Sub FindStyleOld()

Sub FindStyleOldUp()

[bookmark: _Toc55977583][bookmark: _Toc164353428]Jump from (any) style to style
This FindStyle macro is, I think, an improvement on the previous one because I’ve used a different way of doing it. What this macro does is to assess the bit of text that has been selected by the user, checking if it’s italic or bold or small caps or super- or subscript, and then checking whether the font size is different from that of the Normal style (ditto the font colour and the font name) and then setting those attributes into the F&R. Then all you do is to use your normal FindFwd and FindBack keystrokes.

This means that, for example, you can select a superscripted character and then skip from one superscript to the next and back again. Or you could select a bit of a Level 2 heading and jump back and forth between the various Level 2 headings, or select a bit of small caps text and find other bits in small caps.

Practicalities
You can run FindStyle as a separate macro (see TheMacros), but I ‘attach’ it to the FindOnly macro. What I do is add a few extra lines:

Sub FindOnly()
' Version 16.12.10
' Calling FindStyle from the FindOnly macro

If Selection.Start <> Selection.End Then
 Application.Run MacroName:="FindStyle"
 Exit Sub
End If

myFind = InputBox("Find?", "Smart finder", Selection.Find.Text)
If Len(myFind) = 0 Then Exit Sub
etc, etc

What happens is that if no text is selected then it just goes into the main part of the FindOnly macro, but if some text is selected (which FindStyle expects) then it runs the FindStyle macro instead, so one keypress fulfils two functions.

Sub FindStyle()

[bookmark: _Toc55977584][bookmark: _Toc164353429]Jump to next applied style
If you’re interested in paragraphs that are not in Normal style, but have an applied style then this macro jumps you to the next non-Normal paragraph.

Sub JumpNextAppliedStyle()

[bookmark: _Toc55977585][bookmark: _Toc164353430]Jump back to table of contents
After you have hyperlinked from an item in a table of contents (ToC) to that point in the text, it is good to be able to go back. You can use the command WebGoBack which, using the Customize Keyboard dialog, you can allocate to a keystroke. However, I found that it wasn’t altogether reliable, so I created a macro that reads the current line, jumps to the top of the file and finds the first occurrence of that line, i.e. the item in the ToC.

The other advantage of this method is that if you are using the macro above to jump from heading to heading (style to style) then, whatever heading you have now reached, running this macro will jump you back to exactly the right place in the ToC.

Sub ToCback()

[bookmark: _Toc55977586][bookmark: _Toc164353431]Jump from comment to comment
(Video: youtu.be/f7jb6zoh8l4)

N.B. These macros are redundant as Word has them built in. From the Customize Keyboard dialogue box (call it up with the CustomKeys macro!) and select ‘All Commands’ in the left-hand list and then, in the right-hand list, first find NextComment and give it a keystroke, and then PreviousComment and do the same.

Yes, I know that you can use the browser arrows down at the bottom right of the window (below the scroll bar down arrow), but the same browser can be used for jumping between lots of different things. Having set up these two macros, I can leave the browser for jumping between other things, and know that any time I press Ctrl-Alt-Up or Ctrl-Alt-Down I’ll be able to skip straightaway between comments.

Sub CommentNext()

Sub CommentPrevious()

[bookmark: _Toc55977587][bookmark: _Toc164353432]Jump into and out of a comment
Someone wanted a keystroke to move the cursor into and out of the comment box – this macro does that.

Sub CommentJumpInOut()

[bookmark: _Toc55977588][bookmark: _Toc164353433]Jump from edit to edit
(Video: https://youtu.be/EaFJuKTbhGw)

If you’re wanting to look through all the track changes in a file – comments and changes – then you don’t actually need a macro. Yes, I know that there are icons on the toolbar that allow you to go to the next and previous tracked edit, but if you, like me, prefer to use keystrokes rather than clicking icons, all you need to do is to use the Customize Keyboard dialogue box (call it up with the CustomKeys macro!) and select ‘All Commands’ in the left-hand list and then, in the right-hand list, find PreviousChangeOrComment and assign a keystroke to it. And then do the same for the NextChangeOrComment command.

Similarly for the NextComment command.

However, there is no such thing (well, not in Word 2010) as a NextChange command. (There’s a NextChangeOrComment and a NextComment, but not a NextChange). So if you want to jump to the changes without having to go through the comments, here’s a pair of macros.

Sub ChangeNext()

Sub ChangePrevious()

[bookmark: _Toc55977589][bookmark: _Toc164353434]Jump from footnote to footnote
Nothing too earth-shattering, but I just decided it would be useful to look back at the previous (or the next) footnote. If you’re in the text next to the footnote citation number then the two macros below will jump you between the citations (e.g. to check that the citation numbers are outside the punctuation – here,13 and not here14.) If you then double-click the citation number, it will, of course, jump you to the footnote text. From there, the same macros will move you to the text of the previous or next footnote.

Sub FootnoteNext()

Sub FootnoteNextUp()

[bookmark: _Toc55977590][bookmark: _Toc164353435]Jump between main text and footnotes/endnotes
When someone asked for this, I thought it was hardly worth the effort, but having used it, I can see the value. Put the cursor anywhere in front of a note call-out, like this,16 and press Alt-N (or whatever) and it looks through to find the next note and jumps straight into the note text; read and/or edit this note and then, without having to move the cursor or the mouse, click Alt-N again, and it jumps you straight back into the main text where the note is cited. So there’s no need to carefully place the mouse pointer and double-click the note number.

16Here’s the note text (in the footnote area in real use). The cursor can be anywhere in here if you want to jump back.

Sub NoteJumper()

[bookmark: _Toc55977591][bookmark: _Toc164353436]Jump from (section) number to number
(This is fairly basic – The next section gives a more comprehensive system.)

It suddenly dawned on me that it might be useful to be able to jump through a document via the numbered (sub)sections. So, the first two new macros (NextNumber and NextNumberUp) allow you to put the cursor next to, say, 3.1.1 (just to the left of the 3, I mean) and click (whatever keystroke) and it’ll jump you to ‘3.1.2’, then click again to ‘3.1.3’, ‘3.1.4’ etc – and the other macro takes you back up through the sequence, of course.

The same macros also work for 5.6 −> 5.7 −> 5.8 (and back again), and even for numbers without full points (periods): 467 −> 468 −> 469 (and back again).

And then I thought that it would be useful if you could jump from Table 3.4 −> Table 3.5 etc, or ditto for Figure 2.7 −> Figure 2.8, or Fig 1.2 −> Fig. 1.3 etc, etc – I’m sure you get the idea!

So the second two macros also look at the four characters before the cursor, and makes those part of the search.

So, basically, you again put the cursor just to the left of the number, and when you run NextNumberPlus (or NextNumberPlusUp) and it tracks up and down through the numbered tables/figures/equations etc.

However, you can also use this second pair of macros for section numbers, because if the number is the first item on the line:

2.3 This is the title of my next section

then it clocks that and only looks for 2.4 (or 2.2 if you’re going up) where it occurs at the beginning of the line. This means that it does not then jump from the heading mentioned above to, say, ‘Figure 2.4’.

Here are the four macros:

Sub NextNumber()

Sub NextNumberUp()

Sub NextNumberPlus()

Sub NextNumberPlusUp()

[bookmark: _Toc55977592][bookmark: _Toc164353437]Jump down through (section) numbers
This is a development of the idea of the previous macro, providing much more flexibility, with the aim of using it to check the continuity of the numbering in a document. Basically, you place the cursor in the section number or in the caption for a figure (‘Figure’ or ‘Fig.’), a table (‘Table’) or a box (‘Box’), and each time you run it, it will jump to the next numbered item in the sequence.

With captions, it detects if there’s one item missing in the sequence. When it gets to the end of a chapter, it tries to find the first caption in the next chapter. So, for example, at 3.4, it looks for 3.5; if it can’t find it, it looks for 3.6 and, if it finds it, it tells you 3.5 is missing. But if there’s no 3.6 either, it looks for 4.1.

If the section numbering is hierarchical, it performs the following checks, stopping if it gets an affirmative:

1) Add ‘.1’ to see if the section has a subsection (e.g. 4.2.3 −> 4.2.3.1).
2) Look for the next number up (e.g. 4.2.3 −> 4.2.4).
3) Check for the next number up (e.g. 4.2.3 −> 4.2.5), alerting you if there’s a missing number.
4) It also checks for the next number up (e.g. 4.2.3 −> 4.2.6) in case two in a row are missing.
5) Check the next number down the hierarchy (e.g. 4.2.3 −> 4.3)
6) Jump to the next chapter (e.g. 4.2.3 −> 5.1)

Sub FindNextNumber()

As an extra aid, FindNextNumber remembers ‘where it has come from’, so if you want to jump back to the previous number, just run this extra macro. (I have FindNextNumber on Shift-Alt-Right, and FindPreviousNumber on Shift-Alt-Left as a way of thinking moving forward through the text and then one step back again.)

Sub FindPreviousNumber()

[bookmark: _Toc55977593][bookmark: _Toc164353438]Jump to an item in an auto-numbered list
The editor who requested this had a document with a long numbered list, each item consisting of one or more paragraphs. Then through the rest of the text were citations of, for example, ‘see item 32’. The editor had to check that item 32 really was the item being referred to, but the trouble was that the list was auto-numbered, so you couldn’t just search for, say, ‘32.’ or ‘32)’ or ‘32^t’ because auto-numbers can’t be searched with normal F&R. So a macro was needed. Here’s one possible solution.

You open a second window on the file. Click on the citation number (say, 32) in one window and run the macro. It will take you straight to that item in the list, but in the other window.

Sub ListItemFinder()

In complex files that contain a number of different lists, the macro needs to know which list you’re referring to, so you place the cursor at the beginning of the list you actually want to search, and run a second macro:

Sub ListCheckStart()

This macro suggests a value for myOffset at the beginning of the other macro. For example,

myOffset = 12

[bookmark: _Toc55977594][bookmark: _Toc164353439]Jump to next/previous table
If you want to look through all the tables in a document, these two macros jump you back and forth through them, one by one.

Sub TableNext()

Sub TablePrevious()

[bookmark: _Toc55977595][bookmark: _Toc164353440]Jump to next/previous paragraph that has borders
If you want to look through all the text in a document that is surrounded by a border, these two macros jump you back and forth through them, one by one. (If these macros don’t work properly, please let me know. They haven’t been fully tested, sorry.)

Sub BordersNext()

Sub BordersPrevious()

[bookmark: _Toc55977596][bookmark: _Toc164353441]List all figures/tables/boxes
(Video: youtu.be/DnG1XCuOUlk)

This looks down through the text and finds every single reference to Figure/Fig/Fig., Table and Box, and lists them in a separate file. You then end up with a list such as:

	Table 3.1
	Table 3.1
Table 3.1:
	Table 3.2
Table 4.1:
Table 4.2:
	Table 4.2
	Table 4.3
	Table 4.3
Table 4.3:
		Table 4.3
Table 5.1
Table 6.1
		Table 6.1:
	Table 6.2.
Table 6.2:
	Table 6.2
Table 6.3:
Table 6.4:
Table 6.5:
	Table 6.5
	Table 6.6
Table 6.6:
	Table 7.1
	Table 7.2
Table 7.1:
Table 7.2:
	Table 7.3
Table 7.3
	Table 8.1
Table 8.1
	Table 8.2
	Table 8.2
Table 8.2
	Table 8.3
Table 8.3
	Table 10.1
Table 10.1:

Plurals
Tables 4.5 and 4.6
Tables 6.3–6.5

To make it easier to see what’s what, if the reference is in the middle of a paragraph, it’s presumably a citation, not a caption, so the macro adds a tab in front of it. However, if (e.g. in 4.3 and 6.1 above) the reference appears at the start of a paragraph (i.e. looks like a caption), and yet there already seems to be a caption for that item, it adds two tabs – just as a way of making it stand out.

Then after creating the list, it checks through to see if any of the items has a caption but is not cited, or vice versa, in which case it highlights it.

But sometimes the citation is something like “Tables 6.3–6.5 show...” in which case it lists those citations at the end under “Plurals”, so you can check whether those citations cover the (apparently) missing items.

N.B. As a quick way to check the consecutiveness of the numbers, you can use FindNextNumber to run through from the first item against the left margin, auto-repeating the macro (assuming it’s assigned a keystroke). If there’s a number missing, it’ll bleep at you and tell you.

Another way in which consecutiveness can be checked is that the macro lists any lines starting “<Cap>” (or whatever you set at the beginning of the macro code):

<Cap>Figure 12.1 A detailed battery model applicable to NiMH
<Cap>Figure 12.2 Generic battery model.
<Cap>Figure 12.3 Typical battery powered electric vehicle dr
<Cap>Figure 12.4 First-order equivalent circuit model of the
<Cap>Figure 12.5 OCV versus SOC.
<Cap>Figure 12.6 Lumped parameter model of parallel-connected
<Cap>Figure 12.7 Ohmic resistance Rt identification result.
<Cap>Figure 12.7 Ohmic resistance Rp identification result.
<Cap>Figure 12.9 Ohmic resistance Cp identification result.
<Cap>Figure 12.10 MATLAB Simulink implementation of the mode
<Cap>Figure 12.11 Hybrid battery model.

You can immediately see inconsistencies.

Finally, when you are running this macro from within FRedit, make sure that, at the beginning of the macro it says:

mainDocBackToFront = True

which means, “bring the file you’re testing to the front” at the end of the listing process. Otherwise, the other items in the FRedit list will be executed on the fig/tab/box list instead of the actual chapter text.

Sub FigTableBoxLister()

[bookmark: _Toc55977597][bookmark: _Toc164353442]Create a list of all fig/tab/box captions
This looks down through the text and finds all occurrences of lines that have ‘Fig’, ‘Tab’ or ‘Box’ in bold, i.e. captions for said items. It creates a list of them in a new file.

If they aren’t in bold it will miss them! So change the line:

captionsAreBold = True

to False. That’s fine, but any paragraphs starting “Figure 4.3 shows...” will also be included.

Sub CaptionsListAll()

[bookmark: _Toc55977598][bookmark: _Toc164353443]Find short paragraphs (lists)
This looks down through the text and finds the next short paragraph. Useful if you’re trying to look through at all the lists in a long document.

Sub ParaShort()

[bookmark: _Toc55977599][bookmark: _Toc164353444]Highlight all lists
If you want to go through a text looking at all the lists and doing things to them, it might be helpful to highlight them all so that you don’t miss any. This macro adds a green (or whatever you prefer) highlight to every line/paragraph longer than 10 characters (minLength) and shorter than 150 characters (maxLength) (or whatever you prefer).

Sub ListHighlighter()

[bookmark: _Toc55977600][bookmark: _Toc164353445]Go to page
If you want to jump to a specified page number, you can, of course, use <Ctrl-F> and then select Go To Page, but this is much quicker. Instead, just press Alt-G (or whatever) to run the macro, type in the page number and press Enter.

Sub PageHopper()

And this more complex-looking one puts the first line of the selected page right up near the top of the screen, so that you see as large a section of the selected page as possible. This makes it easier to find the part of the selected page you want.

Sub PageHopper2()

[bookmark: _Toc55977601][bookmark: _Toc164353446]Easier scrolling
If you are reading the text on screen and editing as you go, how do you move the text up the screen as you read? I guess most people use the scroll-wheel on the mouse. I used to, but sometimes found that, as the screen display jumped up, I lost my place.

Here’s the tool I now use. If you click somewhere in the line you are reading and run this macro, that line moves up the very top of the screen – so it’s very easy to find.

And you can set it so that the macro leaves the cursor-line as the first, second, third line of the screen – your choice.

For example,

endLineNumber = 2

means it leaves the cursor-line as the second line of the screen.

Sub JumpScroll()

[bookmark: _Toc55977602][bookmark: _Toc164353447]Lost cursor – where was I?!
It may sound silly, but on a complex page, I sometimes put my cursor in a paragraph, get distracted by something and then can’t find where I was up to. The solution is easy – use JumpScroll. This brings your cursor position up to the top of the page and therefore makes it easier to find.

Actually, I find it even more useful when I’m reading and reading and reading through some text. I put the cursor in the bit of text I’ve got up to and run JumpScroll, which brings the page up further with the cursor line at the top of the page.

[bookmark: _Toc55977604][bookmark: _Toc164353448]List of headings
(Some of the other macros now available in this section, such as FindStyle and SmartFinder, may have made this redundant, but it might still be useful for some purposes.)

When you run it, it creates, in a separate file, a list of the various headings. You can use this list to give you an overview of your document if you want to move about the document a fair bit.

So you can move to a specific line (heading) in the list-of-headings file, run the macro, and it drops you at that heading in the text. Run the macro again, and you’re back in the list-of-headings file. You can save the list-of-headings file for future use. However, if you want to create a new list, simply select some text – any text – and the macro takes that as a sign that you want to create a new list, although it does ask if that’s what you want to do, just in case that’s not what you meant to do.

You can set up the style names that the macro will look for at the top of the macro – currently, it’s set to find three styles: ‘Heading 1’, ‘Heading 2’ and ‘Heading 3’. However, there is another way of setting it up which overrides these names.

At the very end of the file whose headings you want to list, put the word ‘Heading’, several times, in the
various different heading styles that you want it to deal with:
Heading
Heading
Heading

The macro will then read these and copy them across to the ListOfHeadings file which means that the list will use the styles as defined in the document you’re working on.

Sub ListofHeadings()

[bookmark: _Toc55977605][bookmark: _Toc164353449]List of headings by style
This macro creates a list, in a separate document, of all the headings in a file. It does so according to the style: Heading 1,Heading 2,Heading 3 etc. You could use it to list other style-based sections of text by putting the style names in the list at the head of the macro.

Sub ListAllHeadings()

[bookmark: _Toc55977606][bookmark: _Toc164353450][bookmark: _Toc55977607]Show paragraph style colour + applied colour
If you want to know what the font colour of the current style is, and whether there is any other font colour applied on top of that style colour, this macro will tell you. It can display the colour numbers in hex and/or decimal.

Sub FontColourReader()

[bookmark: _Toc164353451]Display and/or speak the style of a paragraph
If you want to know what the style of the current paragraph, this macros speaks it and/or pops up a message box.

Sub StyleDetector()

[bookmark: _Toc164353452]Find any of these words
This macro allows you to specify a number of different words and to jump straight to the next occurrence of any of the words from your list.

The words to search are set in the line:

myWords = ":and:or:but:so:yet:if:"

you can add/subtract/change the list accordingly.

Sub SearchTheseWords()

[bookmark: _Toc55977608]

[bookmark: _Toc164353453]16 Editing – comment handling ____
The comment facility can be useful for keeping track of author queries and/or notes for the typesetter and/or the desk editor. This section has a macro that provides a quick-and-easy way of adding comments, a macro for creating an author-query list, a macro for creating a list of all the comments in a set of files, and one that lists the names of those files that contain comments (maybe some don’t), and lists all the comments in each.

And don’t forget that you can jump easily from comment to comment with the CommentNext and CommentPrevious macros (in the earlier Navigation section).

However, since the advent of so-called “modern comments”, many editors have felt the need to revise how we work in terms of generating author queries and creating lists of them. The old comments system worked well for this purpose, but many feel that the new modern comments are less than helpful. So here, in addition to the original system (usable if you are not yet having to use modern comments) we present an alternative system for handling author queries.

For historic reasons, the original set of comment handling macros have been retained, and are placed here, below the alternative system.

(First, the moving from comment to comment macros still work, but the cursor must be in the text, not in the comment.)

N.B. As at May 2023, the Option to disable moern comments is still available; you’ll find it in File–Option–General at the end of the User Interface options.
[bookmark: _Toc164353454][bookmark: _Toc55977614]Jump from comment to comment
(Video: youtu.be/f7jb6zoh8l4)

Running these two macros allows you to skip up and down through the comments. When you get to the top or bottom (first or final comment), it will bong at you to indicate there aren’t any more.

Sub CommentNext()

Sub CommentPrevious()

[bookmark: _Hlk79059405][bookmark: _Toc164353455][bookmark: _Hlk79075005]Creating (modern) comments using macros
(Video: https://youtu.be/Nmy4t2IxciU)

Yes, I know that you can’t use macros inside modern comments, but this macro allows you to do the next best thing...

CommentCompose (and the menu-based version below) allows you to create a comment within a separate Word file (which it sets up for you automatically); then you run the macro a second time and it creates a new comment in the file you were working on, and pastes in the text.

Composing the comment text within a Word file means that you automatically get curly quotes and can use macros such as MultiSwitch and SpellingSuggest (which I use a lot), and you can add features such as highlighting, bold, italic, etc (but not font colours).

Here’s the ‘recipe’:

1) Select the area to add your comment to, run the macro.

2) It jumps to a ‘scrap pad’ Word file.

3) You compose your comment (using other macros, of course, as needed).

4) You run the macro a second time and it copies the comment.

5) It jumps you back to the main document, adds a new comment and pastes in your nice new comment text.

6) You press Ctrl-Enter to finish the comment entry process.

So, in your current document, you select the range to be covered by the new comment and run the macro. If there is no suitable document open, the macro creates a new file which might be titled, say ‘Document3’, types in the filename of your working file, for identification purposes, and leaves you then to compose your new comment text.

When you have finished typing and/or copying and pasting text for the comment – and you can dip in and out of other files if need be – you simply click in the composition file (not the target text) and run CommentCompose again. It realises that this is a ‘comment-composition file’, and it knows the name of the target file, so it selects and copies the comment text, reverts to the target file, creates a new comment and pastes into it the new text.

Next time you try to create a comment in this way, the macro finds ‘Document3’, or whatever, sees that the filename matches your working file, and selects the old text in there, so you can easily delete it, and off you go again creating the text for your latest new comment.

Users of non-English-based computers may need to change the first line in the macro to, say:

stdName = "Dokument"

Sub CommentCompose()

[bookmark: _Toc164353456]Menu-based creation of (modern) comments
(Video: https://youtu.be/Nmy4t2IxciU)

This works in the same basic way as CommentCompose, but when you run it, it looks for a file in which you have placed a series of standard comments that you want to choose from. The list of available comments is displayed in a menu on screen, and you select, by keypress, the one you want.

It then types that text into a separate ‘comment-composition file’ (as used above), and you can then add extra text, or edit the standard comment in some way. Then, ensuring that the cursor is still in the composition file (not the target text) you run CommentCompose a second time. The macro copies your newly composed comment, returns to the target file and inserts this comment, attached to your previously selected text.

The system allows you to include, in the comment, the text range that was selected in your working file when you ran the macro. For example, you might select, say, “Brown 2004”, and select a standard comment that comes out as:

[bookmark: _Hlk50365915]	“Brown 2004” is not in the references list. (But “Brown 2004” is.)

You will find that the cursor is next to the “4” of the second date, so you could delete it and type 5:

	“Brown 2004” is not in the references list. (But “Brown 2005” is.)

The macro has various set-up options. For example, the above comment could be:

	PB: p 300, ln 52. “Brown 2004” is not in the references list. (But “Brown 2004” is.)

This option is set at the beginning of the macro:

' myPrefix = ""
myPrefix = "PB: "
prefixBold = True

' refText = ""
' refText = "p <p> "
refText = "p <p>, ln <l>. "
refBold = True

listName = "zzSwitchList"

The formatting of the prefix and/or the page and/or line number insertion is up to you. Adjust to taste.

So, to be clear, if you use myPrefix = "", then there is no prefix. And you can have just the page number and not the line number, if you like, by using refText = "p <p> ". And they can be bold, or n ot, to taste.

The listName is the name of the file containing your list of standard comments. The list must be at the end of the file, and it would take this form shown below, followed by a view of the menu the macro creates on screen.

Note that it’s the fourth item that generates the comment as above. So the <> is replaced by the text that was copied from the selected range of the comment. Then the “|” (vertical bar) in that item determines where the cursor end up, ready to delete and replace the date.

(You need to use <> if you want to carry the formatting from the original text range – such as bold and italic – into the comment, but use {} where you want the text to take on the formatting of the comment, e.g. the italic in the example above.)

The list must start with some text inside “[[...]]” so that the macro knows where the list starts.

The text in square brackets (only in bold so that it’s clearer to see what’s what) is used for creating the menu; the text in front of the first “[” is what’s actually copied and pasted to make up the comment text.

The letter(s) after the first “[” are the letters to use to choose that comment. It’s only shown in uppercase to make it easier to see on screen; you can just press the lowercase letter(s), followed by pressing Enter.

[bookmark: _Hlk45009567][[comments menu]]
“<>” is not defined in the glossary. [G – Not in glossary.]
“<>” does not appear in this chapter. OK? [T – Not in chapter.]
[bookmark: _Hlk50366835]“<>” is not in the references list. [L – Not in the references list.]
“<>” is not in the references list. (But “{}”| is.) [LL – But xxx is.]
[bookmark: _Hlk79056134]“<>” – Have I caught the intended meaning? [H – Have I caught meaning?]
[bookmark: _Hlk64877590]“<>” – Sorry but I’m having difficulty working out what this means. What does “<>” mean? [M – Meaning?]
[bookmark: _Hlk79053499]“<>” – Will readers know what “|” refers to? If so, that’s fine. [RR – Readers know?]
[bookmark: _Hlk79055727]“<>” – Will the readers know this acronym? If so, fine. (It’s not defined anywhere that I can see.) [A – Acronym]
“<>” – Sorry, but I can’t work out the intended meaning here. Is it something like “<>”? [S – Sorry?]
[bookmark: _Hlk50367253]Doesn’t seem to be cited in the text. [C – Not cited]
“<>” – This sentence has no principal verb, so I can’t work out the meaning, sorry. [V – No verb]

And here’s menu screen this set of comments would produce:

[image:]

Sub CommentComposeMenu()

[bookmark: _Toc164353457]List all modern comments
(Video: https://youtu.be/Nmy4t2IxciU)

This macro lists all the comments in a file, and it adds the comment(at)or’s initials in colour and bold, as set by:

myInits = "PB"
myColour = wdBlue

myInits2 = "NH"
myColour2 = wdPink

' For any other initials
myColour3 = wdGreen

So you can specify two initials to have their own colours, and all the rest will be coloured in myColour3.

Sub CommentsModernCollect()

[bookmark: _Toc164353458][bookmark: _Hlk78290303]Delete modern comments
(Video: https://youtu.be/Nmy4t2IxciU)

If you place the cursor in the text covered by the comment range (i.e. inside the word ‘covered’, in this case) or anywhere in front of that range, then this macro will delete that comment.

If, however, you select some text, it will then ask you if you want to delete ALL the comments. What you do next is up to you!

Sub CommentsModernDelete()

[bookmark: _Toc164353459][bookmark: _Toc55977609][bookmark: _Toc62194954][bookmark: _Toc55977613]Author query list compilation
(Video: youtu.be/Eiw1AE0hffs)

The idea of this macro, based on the CommentAdd macro below, is to copy all the comments out of one file, and put them in a separate file with an ‘Answer:’ line in between each query. For example, the commentsmight come out as follows (where the ‘HB’ is the author’s initials, as set at the beginning of the macro):

PB1: p.189 – “the comment I’ve added to this paragraph” – the first bit of this comment was added automatically, then I typed in this bit.

Answer [HB1]:

PB2: Another comment goes here. OK?

Answer [HB2]:

PB3: ‘If you select some text’ – Have I caught the intended meaning?

Answer [HB3]:

PB4: ‘first character of the text that was selected’ – Have I caught the intended meaning?

Answer [HB4]:

PB5: ‘attached to the whole of the selected text’ – Have I caught the intended meaning?

Answer [HB5]:

PB6: ‘Gobblegook is gooble gobble.’ – Sorry, but I can’t work out the intended meaning here. Is it something like ‘Gobblegook is gooble gobble.’?

Answer [HB6]:

PB7: (p. 212, line 19) ‘the quoted text’ Have I caught the intended meaning?

Answer [HB7]:

This macro also creates another file which is a list of any and all paragraphs that contain one or more comments. This therefore gives the author the context of all the queries for the chapter. It can optionally provide the page number (and line number), in the same way as CommentAddMenu.

You don’t actually have to create a context file. This is set using: createContextFile = True.

When it finishes you can get it to pull the queries file, not the context file, to the front. Set queriesFileOnTop = True at the beginning of the macro.

Sub CommentCopier()

[bookmark: _Toc164353460]List all (old) comments
To create a list of comments, modern and old, in a new file:

Sub CopyAllComments()

If you have to do this for a number of files, and want to save the comments in a file, the following macro will save the comments that occur in a file called ‘ThisFile’ in a file called ‘ThisFile_Cmnts’.

Sub CopyCommentsAndSave()

[bookmark: _Toc164353461]List all comments – with numbers
(Video: youtu.be/f7jb6zoh8l4)

Someone suggested that it would be a help, when referring back to the text, to have the list of comments with the same commenter’s initials plus index numbers as those in the file. This macro gives a list looking like this:

	[PB1]: ‘Chapter 12.’ – I can’t work out the structure.

	[OU2]: I had a go at numbering – see comments below

	[OU3]: As comment below

	[PB4]: More than one technology so ideally subsections are divided again into subsections.

And I’ve added the ‘Answer:’ facility from the CommentCopier macro above. This facility is switched on and off with addAnswers = True/False.

Also, I want to delete from the list of comments all the comments containing ‘T/S:’ because these are comments for the typesetter, not the author, so I have:

deleteTScomments = True
TScode = "T/S:"

So any comment that contains ‘T/S:’ will be deleted from the list.

TIP: If, when you get the query answers back from the author, you use the macro CommentNumbering on the main text with its comments (= queries), it will add the numbers into the text of the comments:

	[PB1]: [PB1] ‘Chapter 12.’ – I can’t work out the structure.

	[OU2]: [OU2] I had a go at numbering – see comments below

	[OU3]: [OU3] As comment below

	[PB4]: [PB4] More than one technology so ideally subsections are divided again into subsections.

Why is that useful? Because, when you implement the answer to the query 1 and delete it, the label numbering is automatically updated, giving:

	[OU1]: [OU2] I had a go at numbering – see comments below

	[OU2]: [OU3] As comment below

	[PB3]: [PB4] More than one technology so ideally subsections are divided again into subsections.

All the comments are now renumbered – confusing! But the original numbering is preserved within the text of the comments. (This is much more difficult to describe than it is to do. Try it, and you’ll see what I mean!)

Sub CommentListNumbered()

[bookmark: _Toc55977616][bookmark: _Toc164353462]List all comments – with ‘all sorts of stuff’
(Video: youtu.be/f7jb6zoh8l4)

This version brings together a whole range of different aspects of each comment, and puts the whole lot in a table. The idea is that the macro, as it stands, puts in all the available information, and you can edit the lines in the macro to cut it down to just the items you want (I’ll tell you how, in a minute).

The information you can have is:

page number
line number
commenter’s initials, e.g. [PB]
...with index number, [PB1] – [PB8], say.
scope (i.e. region of text covered by a comment’s highlighting)
and, of course, the content of the actual comment, including its formatting, fonts, bold, italic, super/subscript etc.

New addition: hd is the heading of the section in which the comment occurs. However, do you want it to show the nearest sub level, or sub-sub-level? This is set at the beginning of the macro by: maxHeading = "Heading 3"

Also, you can split (some of) the comments, and the two ‘halves’ of the comment will appear in two (adjacent) column.

Finally, you can sort everything into the final table on alphabetical order based on one of the columns.

Sample output:

Author queries – Chapter 1

	
	
	Existing text
	Who
	Comment/query
	Response

	PB1
	p3 l.39
	Cole’s Management Theory and Practice
	
	Have we a references list anywhere that gives details?
	Please insert response in this column.

	PB3
	p9 l.4
	To contribute to the meeting when considering project acceleration
	
	Have I caught the intended meaning?
	

	PB5
	p9 l.15
	This person is one who has held a similar position on a previous contract.
	
	In which case, how can anyone start?
	

	PB7
	p11 l.30
	a temperature of −5°F
	
	Does he really mean −20°C? And will readers nowadays have a feel for °F? I don’t.
	

	PB9
	p12 l.31
	These notes have been abstracted from a publication by the Institute of Clerk of Works and Construction Inspectorate – version 2 March 2010.
	
	Do you need permission? If not, fine.
	

	PB6
	p11 l.29
	“It becomes a cultural shock
	PE
	Again, who is this a quote from?
	

	PB8
	p11 l.34
	Illustrating the engineer’s role
	PE
	Have I caught the intended meaning?
	

	PB2
	p5 l.40
	“The overriding feeling is that it successfully works.”
	RS
	Who is this quoting?
	

	PB4
	p9 l.7
	the blue-arse fly syndrome where one spends time flitting between sites
	RS
	Are you happy that the term ‘blue-arse’ is appropriate for this level of book? If so, fine.
	

How is this achieved? OK, the key is that I use the vertical bar ‘|’ as the delimiter to show column changes, and there’s a line in the macro for the text before the comment...

cmnt.Range.InsertBefore Text:=inits & itemNo & "|" & "p." & pn & " l." & ln & "|" & scp & "|"

then a line for the text after the comment...

 cmnt.Range.InsertAfter Text:="|"

then a line for the headings...

Selection.TypeText Text:="||Existing text|Who|Comment/query|Response" & vbCr

Sorting is done on the basis of...

sortOnColumn = 4

If you don’t want it sorted, use sortOnColumn = 0. (The sample above is sorted on column 4, in this case the ‘Who’ column.)

Splitting the comments in two is done, again using the vertical bar, so for one author I’ve added ‘PE|’ at the beginning of the comment, and ‘RS|’ at the beginning of others. If a comment has no ‘|’ then the column is left blank.

To make the split happen, use...

splitComment = True

Sub CommentCollectTabulated()

[bookmark: _Toc164353463]Add a comment
(Video: youtu.be/f7jb6zoh8l4)

(This is an old macro. The previous macros, which add standard comments from a menu, are newer and, I think, better. And a newer still CommentAddSimple is a very simple way to open a comment with a standard initial text.)

(The latest version, Dec 2019, adds the line copySelectedText = True. If you change it to ‘False’ then the selected text will not be copied into the comment.)

(The 2022 version allows you to not bother selecting anything and it will attach the comment to either the current word or the current sentence, according to the value of attachToSentence = True/False at the beginning of the macro.)

If, like me, you use Word’s comment facility to report queries to the author, then you will constantly be marking bits of text and transferring them into a Comment bubble. Why not do it automatically with a macro? This is the format I use, and I’ve tried to put in lots of options at the beginning of the macro (CommentAdd) so that you can do it in different ways.

What I like to do is demonstrated by the comment I’ve added to this paragraph, and you can see that it has changed the section of text that I’m highlighting for the author into blue font.	Comment by P Beverley:
PB: p.189 – “the comment I’ve added to this paragraph” – the first bit of this comment was added automatically, then I typed in this bit.

So, you just select the piece of text that you want to quote in the comment, and run the macro. If you don’t like the text being in blue, just change that line at the beginning of the macro. And if you prefer it to be highlighted instead (or as well!) you can adjust the various True and False items in the first few lines. The automatic adding of the page number is optional as well, as is the optional addition of a line number.

If, however, you just want to add a comment without a quote, place the cursor at the point you want to indicate, and run the macro. If no text is highlighted, then it just produces the comment box as here with the ‘PB:’ added.	Comment by P Beverley:
PB: Another comment goes here. OK?
But if you don’t want ‘PB:’ at the beginning, but something different then that too is set up in one of the first few lines of the macro.

I’ve also added a feature because some people prefer to type their comments into the Comments pane, and not into a comment bubble. This is set with keepPaneOpen = True at the beginning of the macro.

And I also use a second copy of the same macro (CommentAdd2), which I use (a) to say, ‘Bloggs 2001 is not on the references list’ and (b) to add a blank comment addressed to the typesetters: ‘T/S: ’. The way this works is that if some text is selected (the missing reference), it does (a), but if nothing is selected, is does (b). I achieve the necessary effect for (a) by using another of the options (postText = " is not on the refs list").

And then for a way of collating all these comments into an author query sheet, see ‘Author Query Lister’ below.

(But don’t forget that Word’s own shortcut, Ctrl-Alt-M, adds a plain, ordinary, empty comment.)

Sub CommentAdd()

Sub CommentAdd2()

[bookmark: _Toc55977610][bookmark: _Toc62194955][bookmark: _Toc164353464]Add a comment from a menu
(Video: youtu.be/Eiw1AE0hffs – but it’s slightly outdated, sorry)
N.B. This does *not* work with modern comments!

The idea is to have a selection of different standard comments such as ‘Have I caught the intended meaning?’ or ‘This citation is not on the references list.’ or ‘Will the readers know this acronym? (It’s not defined anywhere.)’ So I’ve set these up as a menu and stored them as a list which I put at the very end of the zzSwitchList file that I use with MultiSwitch. (If you don’t yet use MultiSwitch, it’s really worth looking at; it saves me a lot, lot of time and avoids mistyping. But anyway you can create a zzSwitchList file just for this application.)

If you select some text in the working file and run this macro, then choose an option, the selected text will be copied (if you so desire) into the comment bubble, along with your choice of comment. The formatting of the comment is as set in the list in zzSwitchList.	Comment by Paul Beverley:
‘If you select some text’ – Have I caught the intended meaning?

Here’s a sample list, illustrating the sorts of arrangements and formatting you can achieve (it’s not meant to be realistic, but just to illustrate the various features).

These are the ‘rules’ to observe:
– The list must be the final section of text in your zzSwitchList.
– The list must start with “[[My comments]]”.
– No blank lines between items.
– The prompt you input must be a single or double (repeated) letter (‘p’ and ‘pp’ are OK, but not ‘pl’ or ‘mt’.
– Every line must have a “prompt text”, between curly brackets, i.e. the text to appear in the on-screen menu.
– The <> will be replaced by the text you selected (you can use it more than once in a comment – see [s] below).
– The cursor will be placed, in the comment, at the position of the][, and will replace it (what you type will take on the formatting of the][text).

[[My comments]]
[bookmark: _Hlk149061676][l] ‘<>’ is not in the references list. {Not in the references list.}
[ll] ‘<>’ is not in the references list. (But][is.) {Not in the references list. But xxx is.}
[c] ‘<>’ – Not cited in the text? Do you want to cite it somewhere or delete it? {Not cited}
[a] ‘<>’ – Will the readers know this acronym? If so, fine. (It’s not defined anywhere that I can see.) {Acronym}
[s] ‘<>’ – Sorry, but I can’t work out the intended meaning here. Is it something like ‘<>’? {Sorry?}
[m] ‘<>’ – Will the readers know what this means? If so, fine. {Meaning?}
[r] ‘<>’ – Will readers know what ‘][’ refers to? If so, that’s fine. {Readers know?}
[h] ‘<>’ – Have I caught the intended meaning? {Have I caught meaning?}
[u] ‘<>’ – This URL does not seem to work. {URL dead}
[f] ‘<>’ – This figure is not cited in the text. Do you want it cited? If so where? {Fig not cited}
[f] ‘<>’ – This figure is not cited in the text. Do you want it cited? If so where? {Figure not cited}
[e] ‘<>’ – Equation citation missing; please supply. {Equation not cited}
[v] ‘<>’ – This sentence has no principal verb, so I can’t work out the meaning, sorry. {No verb}
[t] [T/S:][] {T/S comment}
[tt] [T/S: This needs formatting in MathType, please.] {T/S: format}
[d] Ditto {Ditto}
[0] {Nowt}

The on-screen menu for the above list looks like this:

[image:]

As you can probably see, the menu is made up by using the letter(s) inside square brackets plus the text in curly brackets from the end of the line. What text you use (and what menu letters) is entirely up to you. You’ll see that there are multiple entries for some of the letter-options, but the macro just uses the first version of any given letter-option that it finds – this makes it very easy for you to change the wording you use for different jobs.

You can also choose to have every comment showing (a) a prefix, (b) the page number (and also (c) the line number) of the quoted text, as in this bubble here. These use the settings:	Comment by Paul Beverley:
PB: (p. 212, line 19) ‘the quoted text’ Have I caught the intended meaning?

myPrefix = "PB: "
addPageNum = True
addLineNum = True

(But note that this is the page and line number at the time when the comment is created. This means that if you later add/subtract chunks of text, then these numbers will no longer be incorrect. Probably more helpful is to use the page (and line) numbers that are generated by the macros CommentCopier and CommentCollectTabulated below.)

keepPaneOpen = False

This final other option decides whether the Comments pane is left open after the macro finishes. (It has to be open while the comment is being compiled, but you may or may not want it to stay open.)

Sub CommentAddMenu()

[bookmark: _Toc55977611][bookmark: _Toc62194956][bookmark: _Toc164353465]Add a comment from a menu
(Video: https://youtu.be/4Ln95a1Cqyc)
N.B. This does *not* work with modern comments!

The idea of this macro, like the previous one, is to add a comment by selecting it from a list that you create, but in this case, the setting up is much simpler – you include your own comments at the beginning of the macro.

To use it, you select the area of text to which the comment relates and run the macro. You then select the comment you want by letter (or you could use numbers):

[image:]

it then opens a new comment box and types in your chosen text.

Within that comment, the macro is able to (a) type a copy of the selected text and (b) finish by leaving the cursor at a particular position within the comment, ready for you to type something.

Here’s a sample line in the macro; it defines one comment:

cm = cm & "L,'[]' is not in the references list. (But '[]|', is.)\"

So to activate this comment, at the prompt, you would type ‘L’ and press Return.

If the selected text was, say ‘Brown, 2016’, then the new comment in the box would contain:

	‘Brown, 2016’ is not in the references list. (But ‘Brown, 2016|’, is.)

And the cursor would be placed where I’ve left the ‘|’ character (but that character will have been deleted). The idea is that you might then delete the ‘6’ and type ‘5’ instead, or whatever, i.e. there is a ‘Brown’ reference, but it’s the wrong year. That comment is then ready to be lifted out of the document – along with the other comments – by using, say, CommentCopier, to generate a queries list for the author.

Here’s the start of the macro:

' myDefaultSelect = "sentence"
myDefaultSelect = "word"

useDoubleQuotes = False
' useDoubleQuotes = True

cm = "Start\"
cm = cm & ",Dummy\"
cm = cm & "l,'[]' is not in the references list.\"
cm = cm & "L,'[]' is not in the references list. (But '[]|', is.)\"
cm = cm & "c,'[]' - Not cited in the text.\"
cm = cm & "h,'[]' - Have I caught the intended meaning?\"
cm = cm & "r,'[]' - Will the readers know what this means? If so, fine.\"
cm = cm & "R,'[]' - Will readers know what '|' refers to? If so, that's fine.\"
cm = cm & "a,'[]' - Will the readers know this acronym? If so, fine. (It's not defined anywhere that I can see.)\"
cm = cm & "s,'[]' - Sorry, but I can't work out the intended meaning here. Is it something like []?\"

The first two lines determine whether, if no text is selected when you run the macro (i.e. you’ve just clicked in a word), it assumes you want to select the current word, or the whole of the current sentence.

The second two lines decide whether the macro uses single or double quote marks – your choice. (It also changes spaced hyphens into spaced en dashes in the comment text.)

Each line that defines your choice of comments has to be punctuated exactly as I have done:

cm = cm & "h,'[]' - Have I caught the intended meaning?\"

So the ‘h’ is the letter that you have to type to select it; then a comma; then the comment; finally, a backslash to define the end of the comment. The ‘[]’ is the marker to show the macro where you want to place a copy of the selected text, and you put a vertical bar, ‘|’, where you want the cursor to end up.

Obviously, you would use your own wording, but the ‘Dummy’ line makes it easier for you to add extra lines while strictly maintaining the punctuation pattern of each line. So copy the whole of the ‘Dummy’ line, and add your chosen letter, and replace ‘Dummy’ with your chosen text:

cm = "Start\"
cm = cm & ",Dummy\"
cm = cm & "l,'[]' is not in the references list.\"
cm = cm & "L,'[]' is not in the references list. (But '[]|', is.)\"
cm = cm & "c,'[]' - Not cited in the text.\"
cm = cm & "h,'[]' - Have I caught the intended meaning?\"
cm = cm & "r,'[]' - Will the readers know what this means? If so, fine.\"
cm = cm & ",Dummy\"
cm = cm & "R,'[]' - Will readers know what '|' refers to? If so, that's fine.\"
cm = cm & "a,'[]' - Will the readers know this acronym? If so, fine. (It's not defined anywhere that I can see.)\"
cm = cm & "s,'[]' - Sorry, but I can't work out the intended meaning here. Is it something like []?\"

And by popular request (two people asked for it!), in your comments, you can /now/ use /italic/ or even *bold*! You do it by adding slashes or asterisks. (“...you can now use italic or even bold!”)

Sub CommentAdder()

[bookmark: _Toc62194957][bookmark: _Toc164353466][bookmark: _Hlk59187429][bookmark: _Toc55977612][bookmark: _Toc62194958]Add a comment – simple version
N.B. This does *not* work with modern comments!

This macro opens a new comment, and adds a standard text – maybe your initials or some such – and then leaves the cursor in the comment, ready for you to add some text.

You can choose to do this in the bubble or in the comment pane. This is set by:

keepPaneOpen = False

Or use True if you perfer to be in the Comments pane.

Sub CommentAddSimple()

[bookmark: _Toc164353467][bookmark: _Hlk108779356]Add a comment from a file
(Video: https://youtu.be/aDfu6JPXqFk)

You have a separate file with comments in this format below (the headword(s) are prompts for you to locate the comment):

Cited: Not cited in the text? Do you want to cite it somewhere or delete it?
Ref missing: This is not in the references list. (But | is.)
Fig cited: This figure is not cited in the text. Do you want it cited? If so where?
Brit spell: The British spelling appears in the original source. (And these comments can be as long as you like, waffling on and on for several lines, as long as it’s all one paragraph; and it can have formatting FEATURES.)

Your comments file can have any name you like, but the name of the file to which the comments are being attached has to have some common word(s) in it, as specified at the beginning of the macro, e.g.

myPartFilename = "hapter"

Select the area of text to which the comment is to be attached (if nothing is selected, it will select the current paragraph or sentence or the current word, if you make attachToWord = True). Move to the comments file and click in the comment you want to use. When you now run the macro, it selects that paragraph, except the headword(s), goes back to the active file (which is why it needs to know its (part) name!) adds a new comment, pastes in the text and (optionally) moves the cursor to the point in the comment where you cunnily planted a ‘|’ (e.g. comment ‘Ref missing’).

Sub CommentAddFromFile()

[bookmark: _Toc164353468]Open the comment pane
(There might be a non-macro way of doing this; if so, please let me know. Ta!)

Sub CommentsPane()

[bookmark: _Toc55977617][bookmark: _Toc164353469]List all commented paragraphs
This macro creates a new file consisting of any and all paragraphs that contain one or more comments.

Sub CommentContextCopier()

[bookmark: _Toc55977618][bookmark: _Toc164353470]Collect all comments in a set of files
(Video: youtu.be/f7jb6zoh8l4)

(Mac users! Visual Basic on older Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

This macro produces a single file containing all the comments copied from all the files in a folder, giving the file name of each and a list of the comments therein. It is basically a multifile version of CommentCopier above.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP
Macro Jobs.doc
Roman cats.doc
Stats.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not the ignored) files, opening each one and creating the list of comments.

The insertion of the “Answer:” lines is optional, by using addAnswerLine = True/False.

Sub MultiFileComment()

[bookmark: _Toc55977619][bookmark: _Toc164353471]Add or remove fixed comment initials and numbers
(Video: youtu.be/f7jb6zoh8l4)

When comments are displayed in bubbles, you see things like:

	[PB1]: ‘Chapter 12.’ – I can’t work out the structure.

	[OU2]: I had a go at numbering – see comments below

	[OU3]: As comment below

	[PB4]: More than one technology so ideally subsections are divided again into subsections.

The initials are those of the person who added the comment, and the numbers are just an index from 1 to however many comments there are in total by that person.

However, the initials and numbers aren’t actually part of the comment text, and therefore aren’t extracted by the macros above. So someone suggested that it would be helpful to be able insert the initials and index number into the text – a sort of ‘hard’ numbering. Then, as you deal with author queries and delete the comments, you will still have the original numbering there for reference. So the macro below produces:

	[PB1]: [PB1]: ‘Chapter 12.’ – I can’t work out the structure.

	[OU2]: [OU2]: I had a go at numbering – see comments below

	[OU3]: [OU3]: As comment below

	[PB4]: [PB4]: More than one technology so ideally subsections are divided again into subsections.

Then, if you delete, say, the first two comments you end up with:

	[OU1]: [OU3]: As comment below

	[PB2]: [PB4]: More than one technology so ideally subsections are divided again into

But then I reckoned that you might add or subtract comments for other reasons and therefore might need to redo the hard numbering. No worries. The macro first of all checks whether the first comment has a hard number. If so, it deletes the hard numbering from all the comments.

Run the macro again and it adds a new set of hard comment numbering.

Sub CommentNumbering()

[bookmark: _Toc55977620][bookmark: _Toc164353472]Add comment initials and numbers to text
(Video: youtu.be/f7jb6zoh8l4)

For comments such as the ones listed above, this macro adds [PB1], [OU2], [OU3], [PB4] etc into the text at the points to which each comment bubble points. Then if the comments are deleted, we still know where they came from, and which number they were.

Sub AddCommentMarkersInText()

[bookmark: _Toc55977621][bookmark: _Toc164353473]Edit the initials within comments
If you need to change the initials assigned to the comments in a file, you can either change every single one to a specific initial or do it selectively, like doing a find and replace.

Sub CommentInitialReplaceAll()

Sub CommentInitialFandR()

[bookmark: _Toc55977622][bookmark: _Toc164353474]Delete all comments
Does what it says on the tin.

Sub DeleteAllComments()

[bookmark: _Toc55977623][bookmark: _Toc164353475]Add a comment from a list to a PDF
Someone asked for the equivalent of CommentAddMenu for a PDF. Unfortunately macros only work in Word. What I suggested, however, is to create a list of comments as a Word file, click in the list, run the macro, and it will go through the list and pick up the comment you wanted and copy it to the clipboard. Then all you have to do is go back to the PDF and paste it.

The list needs to look like this:

1
This is the first comment.
2
This is the second one – and each comment can be as long as you like, and can have things like bold and italic, and even super/subscript, e.g. H2O.
a
Another thing I say often. And this is two sentences – wow!

So when you run the macro, it asks for the code, and you just type in whatever letter/number/symbol you want to use (just a single character).

Sub CommentPicker()

[bookmark: _Toc55977624][bookmark: _Toc164353476]Add a comment from a list into the main text
Extending the idea of the macro above, you can create a list of comments, as before, and when you run the macro and type a letter to select a comment from the list, it will then type it into the text of the main Word file, where the cursor was placed.

The file containing the comments must have the file name specified at the beginning of the macro:

commentDoc = "CommentList"

One extra feature is that you can insert the comment, but specify where, within the comment, the cursor is to be left. For example, the comment might be “This is used on page [page number], where it has a different meaning.” So in the comments list, you would put:

This is used on page ><, where it has a different meaning.

And after typing the comment into the text, the cursor will be at the position of the ‘><’.

Possible error: if it generates an error, saying “Bad file name” then you’ll need to change:

commentDoc = "CommentList"

to

commentDoc = "CommentList.docx"

or "CommentList.doc", if you, like me, generally use .doc files.

Sub CommentPickerInserter()
[bookmark: _Toc55977625][bookmark: _Toc164353477]Change the scope associated with a comment
(This macro gets a mention in video: youtu.be/)
Suppose you’ve added a comment about something, and then you realise that you meant to extend the selection to include the comma, before adding the comment. Is there a way of adjusting the scope of the comment, or do you have to copy the text of the comment, delete the comment, and add a new comment, and paste back the text? Yes, you do! (Well, I haven’t found a way to actually change the scope of a comment.) However, you can of course, get a macro do that for you. So you would select ‘something’ plus the comma, then run the macros, and it would become:	Comment by Paul Beverley: My comment about the comma after ‘something’.

“Suppose you’ve added a comment about something, and then...”	Comment by Paul Beverley:
My comment about the comma after ‘something’.

Here’s the macro:

Sub CommentChangeScope()
[bookmark: _Toc164353478]Change the names associated with the comments
N.B. This macro will not work unless, in Options – General, under “Personalise your copy of Microsoft Office”, you have ticked “Always use these values, regardless of your sign in to Office.”

If, say, all the comments in your file are named as “PB” and “Paul Beverley” and you want to anonymise them, this macro goes through all the comments in the file that are attributed to, say, “Paul Beverley” and change them to “Anon”.

newName = "Anon"
nowName = "Paul Beverley"

Unfortunately, you can’t use a macro to actually alter the name, so it has to copy, delete and reinsert each comment, which will be a bit slow on big files. [Go walk the dog!]

If you want all the comments to say “Anon” (or whatever) regardless of who added them, use:

nowName = ""

Sub CommentNameChanger()

[bookmark: _Toc55977626][bookmark: _Toc164353479]Solve problems when typing text into comment bubbles
You sometimes get strange effects in comment bubbles, such as weird use of open and close quotes, or odd text size or even the inability to type text in, except v-e-r-y--s-l-o-w-l-y. This is sometimes associated with the file being sourced from another language group. The following macro sometimes helps.

Sub CommentTextNormalise()

[bookmark: _Toc55977627]
[bookmark: _Toc164353480]17 Editing – track changes ____
[bookmark: _Toc55977628][bookmark: _Toc164353481]Track change on/off
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)
If you prefer to use a keystroke to switch track changes on and off, here’s a simple macro that does it.

Sub TrackOnOff()

In Word 2010/2011 and later (and 2007?) there is no visible indication of whether track changes are off or on (well, not unless you happen to have the Review ribbon showing), so you might value some audible feedback to show whether track changes are being switched on or off. This macro beeps once if track changes are now off, and twice if they are now on.

Sub TrackOnOffAudible()

[bookmark: _Toc55977629][bookmark: _Toc164353482]Don’t track change this edit
Sometimes, I want to make a change that I don’t want tracked, but all too often I forget to turn track changes back on again. So I thought it might be good to be able to delete and/or replace some text and have the track changes automatically turned off and then turned back on again.

This macro prompts you to type in some text to be inserted at the cursor. However, if some text is already selected when you run the macro, it first deletes the selected text before adding your new text. If you just want to delete some text, select it, run the macro and, when prompted to enter some text, just press Enter.

Sub ChangeNotTracked()

[bookmark: _Toc55977630][bookmark: _Toc164353483]Accept or reject track change
(Video: https://youtu.be/AGyrZbgoTD0)

Yes, I know that Shift-Alt-A and Shift-Alt-Z allow you to accept or reject the selected track change, but I have these macros on Alt-A and Alt-Z, which I find easier, but also they use a little bit of intelligence.

If, when you run the macro, no text is selected then it selects the current line before accepting (rejecting) any track change(s) that it finds therein.

Also called Sub AcceptTracking(), Sub RejectTracking().

Sub TrackChangeAccept()

Sub TrackChangeReject()

[bookmark: _Toc55977631][bookmark: _Toc164353484]Reject track change on specific word/phrase
If you have changed, say, the name of a company incorrectly, and you want to revert to the original name, then this macro searches for a given text (the company name), and undoes the track change.

Sub UndoSpecificTrack()

[bookmark: _Toc55977632][bookmark: _Toc164353485]Track change markup showing or not
If you want to use a keystroke to make the track changes visible – or not – here’s a simple macro that switches them on and off.

Sub ShowHideAllTracking()

However, this shows/hides the track change marks and the comments. If you want to keep the comments visible but hide just the tracking, use the following macro.

Sub ShowHideTracksOnly()

[bookmark: _Toc55977633][bookmark: _Toc164353486]Aspects of track change markup showing or not
(For Word 2016 or later there’s a fourth option – see below.)

The other way of doing it is to have a macro that switches between three different states:

1) Comments only
2) Nothing at all
3) Comments and insertions and deletions and formatting changes

So click, click, click with the same keystroke and it goes between the three states.

Sub TrackingShowSwitcher()

Even better, perhaps, is a four-way switch:

1) Comments and insertions and deletions (but not formatting changes)
2) Comments only
3) Nothing at all
4) The whole bang shoot

Sub TrackingShowSwitcherExtreme()

[bookmark: _Toc55981657][bookmark: _Toc55981755]Yet another way of doing it...
I’ve also done another one, prompted by the fact that in Word 2010/2011, every time you reload a file, all the blankety-blank track changes are switched on, regardless of how you had them set when you saved the file.

It sets the showing and not showing options to whatever your taste is (i.e. you alter the True/False items in the macro). However, if you run it repeatedly, it also flips back and forth between Final and Final Showing Markup, so the one macro is both a track changes show/hide macro and also a macro that sets the various track change options on and off.

The three lines I’ve highlighted in yellow in the macro set whether this macro sets any or all of the comments, insertions/deletes and format changes showing. Set to true/false as required.

Sub TrackChangeShowHide()

With Word 2016 or later, this macro cycles between ‘Simple Markup’, ‘Full Markup’, ‘No Markup’ and ‘Original’. To make this one work, you need to put a ‘Private variable’ at the very top of the VBA window. So, paste in the new macro and then do a Ctrl-Home (or Cmd-Home on Mac) to go to the top of the VBA window and type (or paste):

Private pbMarkupMode As Integer

However, if you only want to loop between ‘Simple Markup’, ‘Full Markup’ and ‘No Markup’, not have Original as one of the options then you can change the line:

includeOriginal = True

to False.

Sub TrackChangeDisplaySelect()

With Word 2016 or later, this macro cycles inline markup and in-balloon markup.

Sub MarkupModeSwitch()

This final macro cycles EITHER between simple and full markup OR between no markup, simple markup and full markup, as set by the line: includeNoMarkup = True (or False).

Sub MarkupDisplaySwitch()

[bookmark: _Toc55977634][bookmark: _Toc164353487]Track changes reminder
(Video: youtu.be/UMFSWIsW0Rc)
(Video [more recent]: youtu.be/P-6VdmT2BbE)

You’re working with track changes switched on, but you want to make a small change that you don’t want tracked. Fine, but it’s all too easy to forget to switch track changes back on, and edit away merrily. Then you realise your mistake! So how about some sort of visual reminder?

This macro switches track changes on and off, alternately. And, at the same time, it flips the display into some obviously abnormal mode. This first version switches the text to embossed, but you can choose any font feature that is not used in the text.

Sub VisibleTrackOff()

For example, if you’re not using underline in the document, you could use version 2. To tone it down even further, you can change wdColorBlue to wdColorLightBlue; or lighter still are wdColorSkyBlue, and then wdColorPaleBlue.

Sub VisibleTrackOff2()

And here’s another one, sent in by Thiers Halliwell. Thiers found that, with large files, changing the font of the whole text was stretching the processor power of the computer a bit. We think that this one should take less processor time. It puts a wiggly border on the right-hand side of the whole text – which should be easily visible. (N.B. You obviously can’t use this if your document uses borders for another purpose.)

Sub VisibleTrackOff3()

And here’s yet another one, from an idea by Bruce Goatly. If you switch track changes off, it changes the document background colour to yellow – very clear, and almost instantaneous. I tried it on a 330,000-word file, and it’s faster than Thiers’ wiggly line.

Sub VisibleTrackOff4()

And if you want to fiddle with the colours more, here’s one where you can specify the RGB values.

Sub VisibleTrackOff5()

I can’t remember why I produced this next macro, but it’s a version of VisibleTrackOff4, adding audible feedback as the change is made, but I think there was a document I was working on where, in some parts of the document, the background colour didn’t change. So this was a modification to be sure that the background colour was clearly visible throughout the document.

And as with VisibleTrackOff5, it’s easier to change the background colour by changing the line:

myColNumber = 200

Increase and decrease the number to taste.

Sub TrackOnOffVisible()

And there’s another one for those Macs that don’t seem to like some of the commands in the normal VBA that PCs use:

Sub TrackOnOffVisibleMac()

Turn the background colour of the screen on and off
Someone has asked for a macro to turn the background colour of the screen on and off anyway – without being related to the track changes. So here it is, in her very tasteful ‘linen’ colour:

Sub BackgroundColourOnOff()

[bookmark: _Toc55977635][bookmark: _Toc164353488][bookmark: _Hlk106715750]Accept all formatting track changes
When using track changes, you sometimes want to keep the insertions/deletions for the author to see, but accept all the formatting track changes. This is a particularly useful macro if you’ve got one of those files where, every so often, when you edit something, it decides to generate track changes showing you where all sorts of formatting is switched on and off. Then this macro is really useful!

It hides all tracking except the format changes, then it accepts ‘all changes’, but that means ‘all the changes shown’ (i.e. just the formatting changes), and then it puts things back the way they were.

Many thanks to Jessica Weissman for showing me this idea – it’s much, much faster than the one I used to use.

Sub AcceptTrackedFormatChanges()

[bookmark: _Toc55977636][bookmark: _Toc164353489][bookmark: _Hlk94969408][bookmark: _Toc55977637]Accept specific types of track changes
When using track changes, you sometimes get swamped by unwanted ones such as ‘Formatted: Not Highlight’ or ‘Formatted: Bullets and Numbering’ – a real pain, but a pain no more! Simply click on one of the track changes you want to accept and run this macro; it and all identical track changes will be accepted.

Sub AcceptSpecificTrackChange()

[bookmark: _Toc164353490]Accept/reject track changes
(Video: https://youtu.be/hqPVJSZsFDk)

These macros allow you to accept/reject track changes. They work on any text that is selected, but if no text is selected, they work just on the individual line of text.

Sub AcceptTracking()

Sub RejectTracking()

[bookmark: _Toc164353491]Accept track change of specific author/editor
If you have a document with changes by different people, maybe an author and an editor, you might want to accept the changes of one, but keep the other(s) as still tracked.

(If you also want to delete their comments, you can use DeleteCommentsSelectively.)

Sub AcceptTrackingSelectively()

Sub DeleteCommentsSelectively()

[bookmark: _Toc164353492][bookmark: _Hlk74642498][bookmark: _Hlk74641409][bookmark: _Hlk74643273]Accept tracking and move on to the next
If you place the cursor in the middle of a track change, or you select a track change and run the macro, it accepts the change and moves on to the next.

This might seem a little bit of overkill in terms of macro use but if you apply a keyboard shortcut and have a lot of comments to accept and need to look at each one individually, then this macro will definitely speed up your work and you will quickly learn whatever keystroke you assign with all the repetition.

If you select an area of text you select doesn’t contain a tracked item, or if the file doesn’t have any more tracked items to move on to it well beep at you. (It will also beep if you put the cursor in a comment.)

Sub TrackAcceptMoveOn()

[bookmark: _Toc164353493]Simplify track changes
(Video: https://youtu.be/AGyrZbgoTD0)

(Mac users: Unfortunately, this macro uses certain features of Visual Basic that are not available on some versions of Word for Mac. Nothing I can do about that, sorry.)

If your document has too many track changes, it can become difficult to see the really important ones. This macro allows you to choose to accept the tracking of (a) format changes, and/or (b) punctuation changes, and/or (c) multiple space changes.

On a large document, it can take quite a time to run, so please me patient.
[image:]

When you run the macro, you enter a number, made up by adding together 1 and/or 2 and/or 4 (you do the maths!), to determine which of the clean-ups you want to run.

If you use this macro, you can leave track changes on the whole time you are editing, and then simplify the tracking later, before sending the file back to the client.

Indeed, if you have a client who absolutely insists you must show ALL track changes, you can educate them by sending a copy of the file with ALL the changes tracked, plus one with the simplified track changes, then they can see how much easier it is for them to see the important changes you have made.

Sub TrackSimplifier()

[bookmark: _Toc55977638][bookmark: _Toc164353494]Consolidate track changes
(Video: https://youtu.be/AGyrZbgoTD0 + youtu.be/_ijsRqUR1fE + https://youtu.be/hqPVJSZsFDk))

If you’re making two or three edits to a phrase or sentence, the result is a bit of a jumble of tracking, so it’s difficult for the author to see what has been changed to what. I therefore have a macro that consolidates the tracking, making it one delete and one insertion. So you select the section of text, and run this macro. OK, all the macro does is to delete the selected text and type it back in again, but this macro means I don’t have to think, just press (in my case) Ctrl-Shift-Alt-C.

If you don’t actually select anything, but just click in a word, it will select that word for deletion and repasting.

Sub ConsolidateTracking()

[bookmark: _Toc55977639][bookmark: _Toc164353495]Navigating track changes
When you want to jump from track change to track change, use NextChange and PreviousChange (see above, under the heading: Jump from Edit to Edit).

[bookmark: _Toc55977640][bookmark: _Toc164353496]Compare documents by using track changes
(Video:youtu.be/5QxjlCuQjdI and https://youtu.be/EaFJuKTbhGw and https://youtu.be/AGyrZbgoTD0)

(Mac users: Unfortunately, this macro uses certain features of Visual Basic that are not available on some versions of Word for Mac. Nothing I can do about that, sorry. You’ll just have to try it and see if it works for you.)

The bad news:
If you want to see the changes between two documents, you can use Word’s Compare function off the Review tab on the ribbon. But, by default, this shows you every single change including, for example, multiple word spacing and multiple line spacing and tabs (so-called ‘white space’). These track changes can completely obscure the more significant changes.

The good news:
Word’s Compare window has a ‘More’ button; if you click it, you can choose, say, not to show the changes in white space.

You can also select the ‘granularity’ – do you want to show changes character by character, or will word by word do? For example, if ‘practice’ has been changed to ‘practise’, it could track it as:

Deleted: c
Inserted: s

or it could show:

Deleted: practice
Inserted: practise

The even better news:
If the comparison is done using a macro, you can decide, by using the macro’s options, whether or not certain types of changes are shown. So once you’ve set these options how you want them, you can just load the files and run the macro.

What’s more, the macro allows you not just to compare whole files but to apply a selection to either or both of the files, and the macro will compare the text that is selected (or the whole text) of one file with the text that is selected (or the whole text) of the other file.

When you run the macro, it creates a menu of all the open files (although any files such as zzSwitchList or zzFReditList, i.e. names starting ‘zz’, will be ignored) and presents them as a numbered list:

	1 – Notes for the author
	2 – Chapter 03_PB_06
	3 – Chapter 03
	4 – Hyphenation list

It asks which files you want to compare, so you can enter, say, 32, which means take file 3 as the original, and show the changes between that and file 2.

Press Enter and the comparison appears – job done!

The options available are set at the beginning of the macro (by moving the apostrophe from the True line to the False line, or vice versa):

' checkFormatting = True
checkFormatting = False
i.e. do you want to show formatting changes, such as bold/italic and style changes?

' checkSpaces = True
checkSpaces = False
i.e. do you want to show the changes to ‘white space’, i.e. word spacing, line spacing and tabs?

checkCase = True
' checkCase = False
i.e. do you want to show changes made to capitalisation?

checkTables = True
' checkTables = False
i.e. do you want to check the tables, or is it OK to just ignore them? (I think this means whether you ignore rows and columns having been added or deleted.)

' showMoves = False
showMoves = True
i.e. do you want the moves shown as moves (in green) or as deleted and retyped text?

showDetail = wdGranularityWordLevel
' showDetail = wdGranularityCharLevel
i.e. what granularity do you want? This sets the way the tracking works when you make changes to a part(s) of a word. Here’s an example:

For example:
Character granularity: I feel particulluarly happy today

Word granularity: I feel particluarly particularly happy today

So that’s how you set the options you prefer, but when you enter your file choice, you can change any one (or more) of them by using codes:

[image:]

So you can follow your ‘21’ by any or all of those following letters, it will change to the opposite of however the options are set at the top of the macro.

Compare parts of the same document
This macro needs to compare two different documents, but someone asked if it was possible to compare two sections of the same document. No, but how about this idea?

Load your test file; do a Save As, and call the new file ‘aaTempFile’.

Delete all the text in your aaTempFile and resave it. This can now be used any time you want to compare any two parts of your test file.

Test process:

1. Make sure that both your test file and your aaTempFile are open on screen.

2. Select the first section of text in your test file and run CopySelectedForCompare. This will copy the selected text, and paste it into your aaTempFile, having first deleted what was in that file from any earlier comparison.

3. Select the second section of text in your test file and run CompareNow.

Complicated to explain, but if you do this a lot, it’s a real time-saver.

Sub CompareNow()

[bookmark: _Toc55977641][bookmark: _Toc164353497]Using find and replace despite track changes being present
(Video: youtu.be/AqREu_iJ2Yg)

Problem: Suppose you have ‘colour’ and have deleted the ‘u’. It will look like this: colour.

Now, if you try to find that word ‘color’ using Word’s Find and Replace function (Ctrl-H), it won’t find it (though it will find the two occurrences of ‘color’ in this sentence). This is because, in a sense, the deleted ‘u’ is still there.

And even if you hide track changes, it still can’t do this find and replace.

It’s no problem if you only want to find the word ‘color’ because both my SmartFinder macro and Word’s own Navigation pane, are able to find it. You just won’t be able to replace it. Nor will you, for example, be able to highlight every occurrence of ‘color’.

Solution: I’ve created two macros that, like my SmartFinder, can find (and replace) things despite the presence of track changes. There are two macros, one for global and one for selective (though you’ll see that they are actually the same macro, just with the initial line changed!).

As it stands, these two macros allow you to do a replace and also to add italic, or bold, or highlight.

To use them, use Ctrl-H to set up the F&R and click Find Next, and it will say that it can’t find any. So then run the relevant macro. It uses the Find and the Replace, and it notes whether you’ve asked for bold and/or italic and/or highlight to be added.

Sub FandRdespiteTCsGlobal()

Sub FandRdespiteTCsSelective()

[bookmark: _Toc55977642][bookmark: _Toc164353498]Count the number (of words) of track changes in a document
(Video: https://youtu.be/gOBpOMbIogU)

This macro… er… counts the number of track changes in a document! And also the number of words (and characters) added and deleted.

Sub TrackChangeCounter()

[bookmark: _Toc55977643][bookmark: _Toc164353499][bookmark: _Hlk44427339]Create a file of all sentences containing any tracking
This macro, er, creates a file of all sentences in a document that contain any tracking, including in endnotes and/or footnotes. It was created because an editor had to do a re-edit of a document, and wanted to know how much of the text contained edits, i.e. how many words.

Sub CopyAllEditedSentences()

[bookmark: _Toc55977644][bookmark: _Toc164353500]Lists the date and time of all track changes
(Video: https://youtu.be/gOBpOMbIogU)

This macro, er, lists the date and time of all the track changes in a document!

Its genesis was when an editor realised she had forgotten to switch her timer on for the editing she had just done.

Bother! I know what time it is now, but I can’t remember what time I started, or what time I had a break or how long that break was – roughly 15 minutes, I guess.

Hang on! All the changes were being tracked and timed as I worked. Paul! Please could you please create a list of all the times of all the tracking in this document?

No problem! It’s a very simple macro. It creates a new file into which it puts all the track dates and times, in the order they occur in the document; then it creates a copy of that list in aniother new file and sorts it into order. Search through that and you can see the time period where there are tracks being made, and where there aren’t. Here’s a sample:

07/10/2019 14:15:00
07/10/2019 14:16:00
07/10/2019 14:16:00
07/10/2019 14:16:00
07/10/2019 14:17:00
07/10/2019 14:17:00
07/10/2019 14:17:00
07/10/2019 14:18:00
07/10/2019 15:07:00
07/10/2019 15:09:00
07/10/2019 15:09:00
07/10/2019 15:09:00
07/10/2019 15:25:00
07/10/2019 15:25:00

Sub TrackDateTimeList()

[bookmark: _Toc55977645]
[bookmark: _Toc164353501]18 Other tools ____
Herein, please find a miscellany of macros – hopefully useful ones – that defied my efforts at categorisation!

[bookmark: _Toc164353502]Open a split screen
Another useful macro is SplitScreen, which splits the screen, at a particular percentage of the way down the window.

Sub SplitScreen()

[bookmark: _Toc55977646][bookmark: _Toc164353503][bookmark: _Hlk36881716][bookmark: _Hlk37425148]Improving Word 365’s Dictate
(Video: https://youtu.be/eJ5O943EIpw)

(To start and stop Dictate, you can allocate a keystroke to the StartDictate command in AllCommands in the CustomizeKeyboard window.)

(See below for hints & tips on using Word 365’s Dictate function.)

It was quite a revelation when someone demonstrated to me the Dragon system, and I seriously considered buying a copy. But it’s £140, and I discovered that Word 365 already had a dictation system, called Dictate. It isn’t perfect, makes some errors, and doesn’t have some of the features of Dragon – but that’s not allowing for the efforts of the ‘macro maniac’!

N.B. As I understand it, Dragon works in any application, whereas Dictate is only for Word. Also, Dragon allows you to do various command functions. Dictate plus DictateExtra only gives you dictation facility, plus links to some of my Fetch macros (GoogleFetch, MapFetch and GoogleTranslate).

Dictate’s own system generates text plus some punctuation (blue is an alternative):

	Speak
	Result

	question mark
	?

	exclamation mark
	!

	new line
	Enter

	full stop
	.

	period
	.

	colon
	:

	semicolon
	;

	open quotes
	"

	close quotes
	"

	smiley face
	:)

but my macro then adds (again, blue is an alternative):

	Speak
	Result

	apostrophe s
	s’

	s apostrophe
	’s

	open bracket
	(

	close bracket
)

	bracket
	(

	eg
	e.g.

	ie
	i.e.

	asterisk
	*

	degree symbol C
	°C

	degree symbol
	°

	bullet point
	•

Apart from these, DictateExtra (a) adds extra features such as bold, italic, etc, (b) corrects dictation errors, and (c) allows you to add your own shortcut words.

Here’s are some examples of the extra features in DictateExtra, but if you want any others, please let me know, and I’ll see if I can add them.

If you have a little bit of familiarity with macro code, you can probably add some of them yourself.

Also, (c) above will allow you to add your own special characters and phrases. For example, you could add to the list (see below):

thanks thanks /Thanks very much.^p^pWith best wishes,^p^pPaul

But, of course, the keyword “thanks thanks” has to be something you wouldn’t say elsewhere.

A few sample changes that DictateExtra will make for you
(The blue font is just used to highlight to you the significant words for the changes that the macro will make.)

“This is bold on great bold off stuff exclamation mark” −> This is great stuff!

“This is italic on great italic off stuff!” −> This is great stuff!

“Covered with blue dash green algae” −> Covered with blue–green algae

“This is good space dash I love it full stop” −> This is good – I love it.

“non hyphen linear” −> non-linear

“lead star Beverley −> *Beverley

“Beverley star −> Beverley*

“The Romans invaded in 55 small caps on BC small caps off” −> The Romans invaded in 55 BC

“50 colon no space 50” −> 50:50

“capital they are here period” −> They are here.

“Initial capital hello there” −> Hello there

or just...

“Capital hello there” −> Hello there

“10 to the power 16” −>

“He's a lower case God hyphen like person” −> He’s a god-like person

(Notice that the macro converts quotes and apostrophes from straight to smart.)

I did have a feature that would convert:

“postcode S oh 53 two yx” −> SO53 2YX

However, it was a very complex bit of coding that took me a day’s programming. And then I discovered that you can just dictate it as:

sierra oscar 53 2 yankee x-ray

And Dictate itself will covert it to

There are lots more, but to save boring repetition here, check out the list below, where I’ve used highlighting on the ones not in the list above, to make them stand out.

The clean-up document
The macro runs in four stages:

0) Postcode interpretation
1) A FRedit-like set of F&Rs
2) Various more complicated functions
3) A final FRedit-like set of F&Rs

Items (1) and (3) are entirely editable by the user, as they are held in a separate file, and look a bit like FRedit lists. The first list (1) uses a forward-slash character (‘/’), instead of FRedit’s vertical bar (‘|’) and the second list (3) use a pair of forward-slash characters (‘//’).

The position and name of this file are set at the beginning of the macro:

listName = "zzDictateBox.docx"
myDir = "C:\Users\User\Documents\"

I’ll give you my list. I suggest you copy it and use it, then later you can add, subtract or modify items to suit your use.

As with FRedit...

1) an initial / means that the line is just a comment and is ignored by the macro

2) a line starting with a tilde (~) is a wildcard F&R

3) a line starting with a bent pipe (¬) is a case insensitive F&R (i.e. will change any and all case characters)

4) a line starting with a hash (#) means totally ignore the rest of this file.

5) using ‘^32’ gives a space; it just makes it more obvious in the file (or you could use Courier font)

[bookmark: _Hlk36996186]OK, here’s my list…

/ My own personal changes
menu/[menu]
[bookmark: _Hlk37074299]box/[input]
okay/OK
However /However,

/ So I can say ‘cap something’ to give ‘Something’
/ instead of saying ‘uppercase’
¬cap /uppercase^32

/ weird things Dictate does to my speech
[bookmark: _Hlk37081194]Maine/me
jaune/John
one drive/OneDrive
becausr/because
baldauf/bold off
or caps/allcaps

/ for my macro names...
Fred it/FRedit
citation list checker/CitationListChecker
citation Lister/CitationLister
proper noun allies/ProperNounAlyse
proper noun lies/ProperNounAlyse
accent allies/AccentAlyse
triple dot/…

/ So I can just say ‘bold something bold off’ to give ‘something’
~bold ([!o])/bold on \1

/ First main changes
[bookmark: _Hlk37313690]"//"
'//'
i’m/I’m
eg / e.g.^32
 I he / i.e.^32
 I E / i.e.^32
 a D / AD^32
− /−
numeral one/1
numeral 1/1
numeral two/2
numeral 2/2
numeral three/3
numeral 3/3
numeral four/4
numeral 4/
numeral five/5
numeral 5/
numeral six/6
numeral 6/6
numeral seven/7
numeral 7/7
numeral eight/8
numeral 8/8
numeral nine/9
numeral 9/9
ower case/owercase
pper case/ppercase
initial capital/uppercase
[bookmark: _Hlk37074012]initial cap/uppercase
minus sign /−

/ Dictate now does various other changes

/ Second main changes
angle bracket //<
 angle bracket off//>
¬^32close bracket//)
¬bracket //(
open square^32//[
^32close square//]
open single //'
 close single//'
 comma^32//,^32
 * // ×^32
^32hyphen^32//-
 space dash //^32–^32
 spaced dash //^32–^32
 dash //–
 i //^32I^32
: no space //:
asterisk//*
lead star //*
^32star //*^32
^32Starr //*^32
Jay dot//J.
^32dot //.^32
^32degree symbol see//ºC
^32degree symbol C//ºC
^32degree symbol//º
^32^p//^p
^32pee^32// p^32
^32bullet point^32//•
^32bullet point^32//•
^32s^32apostrophe ^32//s’
^32apostrophe see^32//’s
^32apostrophe s^32//’s
~<tab^32//^t
~<Tab^32//^t

###

Selecting what gets cleaned up by DictateExtra
When you run DictateExtra, it will apply the clean-up to (a) the selected text (b) the current paragraph or (c) the whole file. If (a) no text is selected, it does the paragraph, if (b) an area of text is selected, it checks that, and if (c) just a single word is selected, it offers you the option to clean up the whole document.

“It’s all gone horribly wrong!”
If for some reason you think that DictateExtra’s changes have made a mess then don’t worry. Before dictate runs it takes a copy of the selected text into the clipboard. So if you want to restore the text you can simply paste it back in over the top of the selected area of text

Sub DictaFRedit()

Related macros
DeleteWord now has an addition so that it deletes the word that Dictate has just typed in – and that you didn’t mean to say!!

Sub DeleteOneWord()

[bookmark: _Toc55977647][bookmark: _Toc164353504]Hints & tips for Word 365’s Dictate
All is revealed! The reason I was getting a different effect on my laptop from my desktop is that there are two different icons that you can choose to put on your QAT (Quick Access Toolbar): (1) ‘Dictation menu’ and (2) ‘Office dictation’. The laptop had one, and the desktop had the other!

‘Dictation menu’: Alt-2 gives the languages menu – but then press <space> to switch Dictate on/off
‘Office dictation’: Alt-2 switches Dictate on/off instantly (my choice!)

However, you can set your own keystroke for switching Dictate on and off. If you open the CustomizeKeyboard window, and click AllCommands in the keft column, then find StartDictate in the right column, you can now make your own choice of keystroke to start and stop Dictate.

If, therefore, you choose the ‘Dictation menu’, as above, then Alt-2 gives the languages menu, and whatever other keystroke you set in CustomizeKeyboard will start and stop Dictate – the best of all worlds keystroke-wise.

[bookmark: _Toc55977648][bookmark: _Toc164353505]Visible countdown
I did this macro for use with Dictate, but in the end decided it wasn’t that practical, but it might be useful for some other purpose.

It counts down in seconds from a specified number of seconds, and displays the count on the status bar and/or in very large font, at a highly zoomed screen display. It also optionally beeps, a few seconds from ‘blast off!’ time.

Sub CountDownVisible()

[bookmark: _Toc55977649][bookmark: _Toc164353506]Easy loading of specific files
(Video: https://youtu.be/gOBpOMbIogU)

The request I received was to be able to load a set of specific files each day, at the start of a job. I offered two solutions.

As a starter, let’s assume that all the files are in the same folder. If not, then you can do it with the second solution.

If you run MultiFileText, and navigate to your chosen folder, it creates a list of all the files in the folder. It asks to continue and combine all those files into one. Say no! You now have a list of all the files in that folder. Delete the ones you don’t want, and save the list file as myFileList.docx, as is listed in the first line of the macro, LoadTheseFiles.

The macro loads the files in the list, then closes the file list.

The other way (which I’ved used for ages) is as shown in TheBook, which loads the two files for my book (i.e. the book itself, plus the macros file) and it also sets the size and zoom of the way the files are to be displayed. Clearly, this is specific to those files in my computer, but it illustrates what you could set up in your own computer.

Sub LoadTheseFiles()

Sub TheBook()

[bookmark: _Toc55977650][bookmark: _Toc164353507]Rescuing a corrupt file
Sometimes Word files (especially those that have been edited and edited and edited over a long period of time) become corrupted and cause all sorts of problems.

One simple solution to try is the so-called ‘Maggy’, named after Margaret Secara, who first publicized the technique. The idea behind it is that the final paragraph mark contains information about the document, some of which might be what has become corrupted.

One website defines Magying thus:
1. Create a new blank document in .docx format
2. Carefully select all of the text in the bad document except the last paragraph mark
3. Copy it.
4. Paste in the new document.
5. Save under a new file name and close all, then re-open.

So why do it my hand, when a macro could do it for you? :-)

Sub MaggyIt()

If that doesn’t help, you can, as an absolute minimum, copy the whole of the text of a file, and save it as pure text, but then you’ve probably got a lot of work to do in restoring the formatting to its original complexity.

I have therefore created a macro that does its level best to rescue as much of the formatting of the file as possible. Currently, it deals with paragraph style, font name, font size, font colour, highlighting, bold, italic, subscript, superscript, small caps and underline. Each of these features takes time, so on a long file (test a short segment of it first!) you might decide to disable some of these, e.g. use chkSmallCaps = False instead of chkSmallCaps = True.

The macro does have the facility to check character styles (such as the ‘HTML_Sample’ style here), but that has to check every single character in the whole document, so it takes forever(!), and is therefore currently disabled, until/unless I can find an easier/quicker way to check.

Sub CloneWordFile()

I have only ever tested CloneWordFile on non-corrupted files but...
[bookmark: _Toc55977651][bookmark: _Toc164353508]Rescuing a corrupt file with equations
The first time I had a real problem with a real file I couldn’t use CloneWordFile because the corrupted file contained a lot of inline images (equations), so I had to create a new macro: it copies the equations out to the end of the file, leaving behind a text marker where each equation was situated.

Then it creates a new, clean, text-only copy of the file, adds back as much of the formatting as it can, and then puts the equations back (hopefully each in its rightful place).

But as it stands, this macro just deals with bold, italic, superscript and the equations. If you want to rescue more than that, do ask because it’s not difficult to extend this macro further.

Sub CloneWithEquations()

[bookmark: _Toc55977652][bookmark: _Toc164353509]Proof checking – file preparation
You’ve got your PDF(s), but if you’re to use macro tools, you need to copy and paste the text (with or without formatting – that’s up to you, but I find it easier without) into a Word file. So you’ve then got loads of text on loads of pages.

The aim now is to turn that into a Word file such that each page of the file contains all of the text of one of the pages of the actual book – and no more. How you do that is up to you, but there obviously needs to be a bit of global F&R involved here, and so FRedit is an obvious tool. Not only does it enable you to quickly and easily do the F&Rs, but it means that you can try a set of F&Rs and then if you find that there’s a problem, you can go back to your original scraped-out-of-PDFs file (you did save a copy of it, didn’t you?!), change some of the items in the FRedit list and run it again.

For the purposes of contents list checking, and index spot-checking, your aim is to have a page number clearly visible at the top or bottom of each page, preferably bold and in a large font size.

Here’s the ‘recipe’ I used for a particular job.

1. Cut the prelims and paste them to the end of the file so that page 1 of the book is the first page of the actual Word file.

2. Check the pattern of each page. In this case, on each page, I’ve got something like:

OUP UNCORRECTED PROOF – REVISES, 29/12/2011, GLYPH
[12:57 29/12/2011 Lewenstein-Ch01.tex] Job No: Lewenstein:Water Chemistry Page: 1 1–12

3. I select ‘OUP UNCORRECTED PROOF’ and run CountPhrase. It tells me that it occurs 494 times. The book has 471 ‘proper’ numbered pages and some prelims, so it looks as if this will do the trick.

4. Think out a wildcard F&R – the page number is there, after the ‘Chemistry Page:’ bit, but it has the page range ‘1–12’ for chapter 1 following. I check ‘Lewenstein:Water Chemistry Page:’ and there are 494 of those too. So my first FRedit item is going to be:

~OUP UNCORRECTED PROOF* Lewenstein:Water Chemistry Page:|zczc

so I’ll then have:

zczc 1 1–12

5. So each page has, at the top, something of the form ‘zczc<space>1<space>1–12’ or, more generally, something like ‘zczc<space>331<space>293–339’. So let’s try this:

~zczc^32([0-9]{1,3})*^13|>>>>>\1<<<<<^p

6. With Normal style at 11pt Times New Roman, I can see that the first few pages look OK – one page of the book = one page of the Word file, but halfway down the file I see that page 245 is on Word page 745! So change Normal style to 8pt and 316 is on page 395 – better, but why the overrun? In my case, it’s loads of very short lines – numbers in tables and equations, so let’s concatenate all short lines (I’ve just nipped back one stage, and added some more chevrons to my page number format so that each of those lines is longer than my ‘short’ lines):

~^13([!^13]{1,12})^13|^32\1

This says find a carriage return (CR) followed by between 1 and 12 characters, followed by another CR, and replace it by a space (^32) plus the characters you just found (but not the CRs). That sorted the pagination one-for-one.

(Having done this, I then found that I could crank the Normal font size back up to 11pt and still maintain the correct pagination!)

7. You might then find things like ‘Köhl’, ‘Krüger’ etc, so add some more lines to your FRedit list:
ö|ö
ü|ü

And you sometimes get problems with fl, fi and ffi ligatures. This and other things are covered in the ‘Text exported from PDFs’ section of the FRedit library.
[bookmark: _Toc55977653][bookmark: _Toc164353510]Proof checking – check page numbers
It isn’t always as easy as the above example. In some jobs, the only page number is the actual printed page number on the top or bottom of the page and, of course, the first page of each chapter may not have a page number. So if you want to check the pagination and find out where the page numbers are missing – so that you can add them in – you can use this macro.

It starts from the current page (which it assumes you have checked), moves to the following page and checks that the page number at the top of the page (or optionally at the bottom of the page) matches the actual page number in Word. If so, it goes on to the next; if not it stops and beeps at you.

The format of the ‘page number’ – which must be on the very first or the very last line of the page:

 Any text and symbols £$%^& you like 437 Any text and symbols £$%^& you like

i.e. it homes in from the RHS and from the LHS of the line until it finds the number somewhere in the middle. This is because you often have, on successive pages:

Standard optical lattices: what’s new? 437
438 Standard optical lattices: what’s new?

Sub PageNumberChecker()

[bookmark: _Toc55977654][bookmark: _Toc164353511]Proof checking – contents list check
Once you’ve got a Word file with ‘true’ page numbering, you can check the page numbers of the contents list. (These days much typesetting is done with auto-generated contents lists, but it’s always worth doing spot-checks – just to convince yourself.)

Put a copy of the contents list at the end of the file, put the cursor somewhere on a line of the contents list and run the macro. It looks for the page number at the end of the line, places a temporary marker and then takes you to that numbered page, so you can confirm if this really is section such-and-such.

Run the macro a second time, and it realises that it’s not in the contents list anymore and goes down to find that temporary marker and deletes it. It then moves down to the following line of the contents list so that you’re ready to start again and check that item … or decide to move the cursor down further to check a different one.

Sub ContentsListChecker()

[bookmark: _Toc55977655][bookmark: _Toc164353512]Proof checking – index spot-check
As above, if you’ve got a Word file with ‘true’ page numbering, you can check items in the index.

Assuming that the index is at the end of the file, put the cursor in a word within the index and run the macro. It will find and list all the pages on which that word occurs. If you’re happy with the result, click OK, and try another word. If you want to record these alternative pages that it has found, click No, and it will type the list into the index, and highlight this new list of page numbers.

If you just click in a word, it will look for that word, but if you select some text, it will count the occurrences of the selected text.

As it stands, it will find words within words, i.e. if you were to check ‘ferromagnet’, it would also list the pages for ‘ferromagnetic’, ‘ferromagnetically’ and, more worryingly, ‘antiferromagnetic’. So, at the beginning of the macro, you can set doWholeWordsOnly = True, so that it will only find ‘ferromagnet’. Indeed, if you’re going to use this macro a lot, it might be worth having two copies of the macro (remembering to change the name of one of them slightly), one with each option.

To avoid the macro reporting the occurrence of the word within the index itself as a ‘page on which this word occurs’, you can tell the macro when to stop looking by setting indexPageStart = 471 or wherever the index starts.

Sub IndexChecker()

[bookmark: _Toc55977656][bookmark: _Toc164353513]Semi-automatic reference checking
You have an index (or any other alphabetic list), but you need to add A, B, C, etc headers at the start of each alphabetic section. This macro adds the headers, with a blank line before each, and makes the header bold.

Sub AlphaHeadersOnIndex()

[bookmark: _Toc55977657][bookmark: _Toc164353514]Automatic reference citation checking
[bookmark: _Hlk92529641](Video: https://youtu.be/l5mkFuRps_o)

New feature: The macro now produces an extra report in which it tries to “pair off” simple citations, e.g. Smith 2002. If you don’t want it, the, at the start of the macro, set doTrySimplePairing = False.

For Harvard, you will probably just need CitationAlyse, but you might like to also use ParagraphShrink as an aid to checking the results.

Other macros that might be useful while checking the list are: FindSamePlace(Back), InstantFindUp(Down).

In operation, CitationAlyse generates an alphabetic list, in a separate file, of all the different citations in your text, interleaved with all the actual references, and then sorted by year. Here’s an example:

Allen and Peters 1972
Allen and Peters 1972a
Allen, L., Peters, G. I. 1972a. Amplified spontaneous emission and OH molecules. Nature 235, 143-144.
Allen, L. and Peters, G. I. 1972b. Spectral distribution of amplified spontaneous emission. Journal of physics A: general physics 5, 695-704.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Allen 1973
Allen, C. W. 1973. Astrophysical quantities. Athlone Press, London.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alzetta et al 1976
Alzetta, G. A., Gozzini, A. L., Moi, L., Orriois, G. 1976. An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor. Nuovo cimento B36, 5-20.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Aller 1984
Aller, L. H. 1984. Physics of thermal gaseous nebulae. D. Riedel Publ. Co., Dordrecht.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can look through this ‘Citation query file’ and quickly see which citation goes with which reference. So if there’s a one-to-one match, you can delete that pair from the list, knowing that there won’t need to be any further checking.

Better still, if you use ParagraphShrink, you can still search through for items, but you know that the tiny items are squared off citation/reference pairs (the first ones have wrong date letters):
Allen and Peters 1972
Allen and Peters 1972a
Allen, L., Peters, G. I. 1972a. Amplified spontaneous emission and OH molecules. Nature 235, 143-144.
Allen, L. and Peters, G. I. 1972b. Spectral distribution of amplified spontaneous emission. Journal of physics A: general physics 5, 695-704.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Allen 1973
Allen, C. W. 1973. Astrophysical quantities. Athlone Press, London.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alzetta et al 1976
Alzetta, G. A., Gozzini, A. L., Moi, L., Orriois, G. 1976. An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor. Nuovo cimento B36, 5-20.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Aller 1984
Aller, L. H. 1984. Physics of thermal gaseous nebulae. D. Riedel Publ. Co., Dordrecht.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Any citations and references that remain (e.g. Aller 1956, above, which isn’t cited), need to be checked via the internet or with the author. Similarly, if the dates of a pair but don’t match, tjhey will need checking.

[bookmark: _Hlk89934688]To run the macro:
(a) Check that the references list is the final item in the document; if not, delete any tables, text etc that follow the list (you are working on a copy of the document, right?!), or move them up above the references list, especially if they contain citations, as they need to be checked.

(b) Place the cursor in the first item in the references list and then run the macro.

The CitationAlyse macro should find all of the following types of citation.

 A.B. Smith, 2010a
 AB Smith, 2010b
 Smith A.B., 2011
 Smith AB, 2012
 Smith, 2013
 Smith and Brown, 2014a
 Smith & Brown, 2014b
 Smith et al, 2015
 Smith, Brown & Green, 2016a
 Smith, Brown and Green, 2016b
 Smith, Brown, Green et al, 2017
[bookmark: _Hlk89520912] Smith, in press
[bookmark: _Hlk89520751] Smith et alii, 2019

[bookmark: _Hlk89521643]plus various name combinations such as:

 von Brown
 van der Smith
 de la Green
 di Giuseppe

(If it misses any of yours, please let me know.)

One feature that I added more recently is to use highlighting (in multicolours!) to try to draw your attention to linked citations/references. It might not be necessary on a short references list, but where references are cited in various different ways, I thought it might help to see the links more clearly. Here’s a sample text:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Buomprisco et al 2021
Buomprisco, G., Ricci, S., Perri, R. & De Sio, S. (2021). Health and Telework: New Challenges after COVID-19 Pandemic. European Journal of Environment and Public Health, 5, em0073.
Chaves-Montero and Vázquez-Aguado 2021
Inoue and Sekijima 2021
Kniffin et al 2021
Kniffin, K. M., Narayanan, J., Anseel, F., Antonakis, J., Ashford, S. P., Bakker, A. B., … Choi, V. K. (2021). COVID-19 and the workplace: Implications, issues, and insights for future research and action. American Psychologist, 76, 63.
Morilla-Luchena, A., Muñoz-Moreno, R., Chaves-Montero, A. & Vázquez-Aguado, O. (2021). Telework and Social Services in Spain during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18, 725.
Muñoz-Moreno Chaves-Montero and Vázquez-Aguado 2021
Okubo et al 2021
Okubo Inoue and Sekijima 2021
Okubo, T., Inoue, A. & Sekijima, K. (2021). Teleworker Performance in the COVID-19 Era in Japan. Asian Economic Papers, 20, 175–192.
Perri and De Sio 2021
Ricci Perri and De Sio 2021
Wang et al 2021
Wang, B., Liu, Y., Qian, J. & Parker, S. K. (2021). Achieving Effective Remote Working During the COVID-19 Pandemic: A Work Design Perspective. Applied Psychology, 70, 16–59.


Sub CitationAlyse()

Sub ParagraphShrink()

[bookmark: _Toc164353515][bookmark: _Hlk98397242]Semi-automatic short-title reference citation checking
To check whether all cited references are listed and vice versa is a more complicated process for short-title than it is for Harvard citations; you will need a toolkit and a ‘recipe’:

The toolkit you will need are: CopyTextSimple and ShortTitleAlyse, plus ShortTitleUnderline to reduce RSI. Then for checking you might use FindSamePlace, InstantFindUp(Down), FindFwd and FindBack to search the text.

(I’ve never used short-title, so if this recipe could be improved, please let me know.)

Recipe:
Use CopyTextSimple to create a file of all the text, including the footnotes (which I gather contain the short-title references).
– Delete the main text from this test file, leaving just the references list and the footnotes.
– Ensure there are two or three blank lines between the text and the footnotes.
– Read through the notes, adding an underline to the author name(s) of each reference. To speed it up and reduce the RSI caused by double-clicking and/or drag-selecting, use ShortTitleUnderline – simply click somewhere in the first author name and the macro selects it and all words up to the punctuation mark (comma, presumably) before the work’s title.
– Save this file for future reference and run ShortTitleAlyse.

The macro will do its very best to pair up the citations and references, which you can then check off to see if they match. You can then use the search tools above to check out anything that’s missing.

Sub ShortTitleAlyse()

Sub ShortTitleUnderline()

[bookmark: _Toc55977659][bookmark: _Toc164353516]Add word/text to list
(Ha! I didn’t remember I’d done this one, so I wrote another similar one, CopyToList, in October 2016.)

This is just a speed-up that someone asked for. You’re working on some text and, every now and then you decide that a word or phrase needs to be added to a list held in another file. If so, either just place the cursor in a word or select a couple of words and run the macro. It copies it and pastes it into your list file, and then returns to the text where it started.

Which file does it paste it into? You can specify by using:

listName = "StyleSheet"
listName2 = "WordList"

So if there’s a file open in Word whose name contains either ‘StyleSheet’ or ‘WordList’, it will use that. And you can specify a shorter name, e.g. just ‘List’, so it picks up ‘WordList’ or ‘SpellingList’ or whatever.

The other option is either just to take the text of the word, and not its bold/italic/super/subscript. Or you can get it to take the formatting too – e.g. so that it takes ‘H2O’ or ‘funnyword’. For the latter, use:
withFormatting = True

If you’re taking just pure text (withFormatting = False), you can set the font it uses when typing it into the list:

myFont "Calibri"

Sub AddWordToStyleList()

[bookmark: _Toc55977660][bookmark: _Toc164353517]Save files as PDF
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

This macro saves a batch of Word files as PDFs.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP
Macro Jobs.doc
Roman cats.doc
Stats.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not ignored) files, opening each one and saving a PDF copy of each.

Sub MultiFilePDF()

[bookmark: _Toc55977661][bookmark: _Toc164353518]Save duplicate set of files
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

When I start a multifile job, I keep a copy of the Word files for the book in a folder called AsReceived, knowing that I can, at any time, go back and have a look at the original files.

Then I create a folder alongside AsReceived called WorkingFiles, and in it I put a copy of all the files, adding a suffix to each filename, so that ‘Chapter_1’ becomes ‘Chapter_1_PB’, or whatever. This macro automates that process.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP
Macro Jobs.doc
Roman cats.doc
Stats.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not ignored) files, loading each of the files and doing a SaveAs into the new folder, adding your choice of suffix as it goes. The parameters are set by:

toFolder = "WorkingFiles"
myPostFix = "_PB"

So the new file for ‘Chapter_1’ is ‘Chapter_1_PB’ and it will be stored in a folder called ‘WorkingFiles’ – which you have to create before you run the macro, though it will prompt you to do so, if you forget.

Sub MultiFileCopier()

[bookmark: _Toc55977662][bookmark: _Toc164353519]‘Save as’ current file, but with index
This is an alternative approach to saving a complete set of chapter files, as above. Instead, you load the incoming ‘Chapter 1’ file and run this macro. It will do a Save As, to create a copy file, but will add a suffix to make it, ‘Chapter 1_PB_01’. And optionally it can switch track changes on, so you don’t forget.

Also, if the macro sees the current file is, say, ‘Chapter 3_PB_04’ it will do a Save As with an incremented index number: ‘Chapter 3_PB_05’.

Sub SaveAsWithIndex()

[bookmark: _Toc55977663][bookmark: _Toc164353520]Open the window at specific size, position and magnification
My specific use for this macro is when I’ve opened a file, and want it to be fully open on my right-hand monitor, ready to start editing it. So the macro opens it at a size just smaller than full screen, and at a magnification of my choice, and then it maximises it to full screen.

But by using this macro, you can set up a Word file window to whatever size (Width:= and Height:=) and position (Left:= and Top:=) and magnification (Zoom.Percentage =) you happen to want.

Sub OpenMySize()

[bookmark: _Toc55977664][bookmark: _Toc164353521]Accept track changes in a set of files
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

If you need to provide the client with a set of files with track changes and another with track changes accepted, then create a copy of the folder of chapter files, and run this macro.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you also want to delete all comments, the macro has that option, set at the beginning of the macro:

alsoRemoveComments = True

Remember, if you run this macro, all the files will have their track changes accepted irrevocably.

Sub MultiFileAcceptTrackChanges()

[bookmark: _Toc55977665][bookmark: _Toc164353522]Show all hidden text in a set of files
(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters.)

This loads each file in turn, shows all hidden text and then resaves the file.

Sub MultiFileShowHiddenText()

[bookmark: _Toc55977666][bookmark: _Toc164353523]Overtype beware!
Has this happened to you? You’re busy typing, and suddenly you realise that what you are typing is gobbling up the text ahead of it! Yes, you must have accidentally hit the Insert key. Arrgghhhh!

[bookmark: _Toc55981660][bookmark: _Toc55981758]Solution 1
Use Tools – Options – Edit, and on the dialogue there you’ll find ‘Use the INS key for paste’. So what happens if you press Insert is that it does the equivalent of Ctrl-V.

[bookmark: _Toc55981661][bookmark: _Toc55981759]Solution 2
Use the following macro:

Sub DoNowt()

Yes, that is correct; the macro has a title and an end, but it doesn’t actually do anything. But actually, that’s the whole point: you assign this macro to the Insert key, so when you press that key, absolutely nothing happens.

[bookmark: _Toc55981662][bookmark: _Toc55981760]Solution 3
If, like me, you occasionally find the overtype facility really useful, you can use the following macro, and again assign it to the Insert key.

Sub OvertypeBeep()

Now, each time you press Insert, it toggles between insert and overtype, but it also makes a noise. It beeps twice when you switch to overtype, and once when you switch back to normal.

Hopefully, you then won’t switch into overtype without realising it!

This fourth version adds a visual reminder to the audio:

Sub OvertypeBeep2()

[bookmark: _Toc55977667][bookmark: _Toc164353524]Reverse order of list
This macro takes a list and reverses its order, so:

1) Blah blah
2) Yeh yeh
What?!
No!
3) Whoa whoa

becomes

3) Whoa whoa
No!
What?!
2) Yeh yeh
1) Blah blah

Just select the list and run the macro. If no text is selected, the macro assumes that you want to sort the whole of the text in the file (but it does at least ask first, just in case it’s a big file and you ran the macro in error!).

Sub ReverseList()

[bookmark: _Toc55977668][bookmark: _Toc164353525]Show/hide graphics
If you have a file that’s heavy with graphics, it may speed things up if the graphics aren’t displayed on screen. Word describes this as using place holders, i.e. blank squares in place of the pictures. You can switch this facility on and off with this macro.
(Also now under new name.)

Sub PictureShow()
Sub HideShowPictures()

[bookmark: _Toc55977669][bookmark: _Toc164353526]Unicode lister
Publishers sometimes ask for a list of all Unicode characters and/or Symbol font characters (usually Greek for maths/science/engineering). If so, this macro lists them all, either those in a single file or from all of the (Word) files in one folder. This macro does both.

Sub SpecialCharList()

[bookmark: _Toc55977670][bookmark: _Toc164353527]Open the customize keyboard dialogue box
If you customize the keyboard often, here’s a macro to pull up the dialogue box. When you run the macro, it opens the dialogue box with ‘Macros’ selected, if you then click in the RH column, you can select a macro.

Hint 1: You can start the selection of the macro name by quickly typing its first few characters.

Hint 2: If you prefer keyboard to mouse and have assigned this macro to, say, Ctrl-Alt-Shift-K, you don’t need to use the mouse at all. Simply press Ctrl-Alt-Shift-K (or whatever), then press the Tab key; this jumps you straight to the RH column, and you can start typing the macro name. 

Sub CustomKeys()

[bookmark: _Toc55977671][bookmark: _Toc164353528]Custom keys lister
If you’re anything like me, you will have set up various special keystrokes and then forgotten about some of them. Word refers to these as keybinding – links between specific keys and specific functions, be they adding styles, inserting special characters, executing Word commands or running particular macros. This macro will create a complete list of them all, showing what type of keystroke they are – a macro, a style, a command etc – and what their names are.

You may be aware that there is an option on Word’s Print menu under ‘Print What?’ to print out a list of keybindings. However, this macro produces a much more compact listing (i.e. uses up less paper), which is much easier to read. Also, it produces it as a file, so you can keep it on the computer for later reference and/or highlight particular key definitions as an aide-memoire – and you don’t even have to print it out at all if you don’t want to.

It actually produces two versions of the list. The first is sorted in order of the keystroke, and the second is in order of the command that the keystroke performs.

Sub KeystrokeLister()

[bookmark: _Toc55977672][bookmark: _Toc164353529]Automatically saving and restoring macros and keybindings (keystrokes)
N.B. I think this newer backup system is better than the one below, so have a look at this first.
(Video:youtu.be/aqLFgNyZh8E)

And/or use the quick-and-dirty method of simply taking a copy of your Normal template:
(Video: https://youtu.be/-mid7To3P0o) (This is explained in Appendix 12.)

Health warning: Please be careful with these macros. They are supposed to save you the grief of losing your macros and/or your assigned keystrokes, but using them carelessly could cause confusion. The most likely problem is that you end up with two sets of the same macros in VBA – not a good idea!

(Alternative backup measure: [This is fully explained in Appendix 12, both for PC and Mac.] But if you want a quick and easy way to back up your macros and keystrokes, close Word, find your templates folder – mine is at C:\Users\Paul\AppData\Roaming\Microsoft\Templates, but I don’t know how you find yours – click on the Normal file and do a Ctrl-C and a Ctrl-V. Sorted. If some time later, you open Word, click Alt-F8 and discovered that all your macros have vanished: (1) make sure that, in the ‘Macros in: box under the non-existent list of macros, it actually does say ‘All active templates and documents’; if not, select that from the drop-down arrow, and they should reappear. If not then (2) close Word, find your templates folder, click on the Normal file and rename it ‘Normal today’ or some such, then click on the latest copy of Normal you have – mine is ‘Normal - Copy (20)’ – do a Ctrl-C and a Ctrl-V, and rename the ‘Normal - Copy (21)’, or whatever, into just ‘Normal’, and your macros and keystrokes will have been restored.)

Before you start, make sure that you have loaded both macros: MacrosAllRestore and MacrosAllBackup – into VBA.

When you want to do a backup, go into VBA (with Alt-F11) and select all (Ctrl-A) and copy all your macros (Ctrl-C). Then close the VBA window and create a new Word document and paste (Ctrl-V) all your macros into it.

Now run the MacrosAllBackup macro.

If you look within that file, inside the MacrosAllRestore macro, are lines such as:

' AbbrSwap: Alt+Ctrl+F11
' AccentPicker: Alt+]
' AcceptFormatting: Alt+Ctrl+Shift+F
' AddQuotesDouble: Alt+Ctrl+2

This is an alphabetic list of all the macros that have keystrokes assigned to them. It has a name and a date at the top, so if you do a SaveAs, it offers you this dated filename with which to save the file – but it’s your choice.

Now, if something goes wrong, and you lose all your macros (or if, as I do, you want to transfer your set of macros and keystrokes to another computer), you can copy the contents of this backup file and paste it into VBA. Then, keeping the backup Word file open, if you run MacrosAllRestore then it will reassign your keystrokes.

(The commands are different on Macs, so there’s a separate Mac restore version.)

Sub MacrosAllBackup()

Sub MacrosAllRestore()

Mac users will need:
MacrosAllRestoreMac()

[bookmark: _Toc55977673][bookmark: _Toc164353530]Saving and restoring your macros and keybindings (keystrokes)
(Video: youtu.be/kVSnlm6Cvbs)

Saving the macros in your Normal template is easy enough, but I’ve finally worked out a system for keeping a list of all the keystrokes allocated to macros, in order to restore them. This means (a) you have security in knowing that you won’t lose your macros and then have to reassign all the associated keystrokes (provided you remember to back them up regularly!), (b) you can easily transfer macros and the keystrokes across to another computer (e.g. to have an identical set of macros and keystrokes on your laptop (a real boon to me!), (c) you can easily transfer a selected set of macros and keystrokes to someone else – e.g. to train other people in using macros.

For saving the macros (as a backup), you can just go into VBA (Alt-F8, click on a macro name and click on Edit), then do a Ctrl-A and a Ctrl-C to copy the macros. Close VBA, create a new Word document and Ctrl-V to paste the text of the macros, then Save As this file, somewhere safe.

My KeystrokeLister macro (above) creates a list of the macros and keystrokes, and that’s useful for seeing what keystrokes you’ve used, as it sorts the list alphabetically both by macro name and by keystroke. However, for the specific purpose of saving and restoring the keystroke assignments we have KeystrokesMacroSave, which creates a list like this:

All macro key assignments
Normal.NewMacros.AbbrSwap	Alt+Ctrl+F11
Normal.NewMacros.AccentPicker	Alt+]
Normal.NewMacros.AcceptFormatting	Alt+Ctrl+Shift+F
Normal.NewMacros.AddParentheses	Alt+0
Normal.NewMacros.AddQuotesDouble	Alt+Ctrl+2
Normal.NewMacros.AddQuotesSingle	Alt+Ctrl+1

(The macro ‘greys out’ the Normal.NewMacros bits to make it easier to see the macro names.)

The occasion on which I would have bitten your hand off for this facility was when I did a Ctrl-A followed by a Backspace, thinking the cursor was in a Word file – it was in VBA! So, at a stroke, all 500-odd macro were gone. No worries, I thought: Ctrl-Z restores the macros. True, but by deleting the macros, all of a couple of hundred keystroke assignments were gone, and had to be restored one by one by hand, simply by looking at the output of KeystrokeLister.

But now, as long as you’ve run KeystrokesMacroSave, you can restore all the macro keystroke assignments automatically, using KeystrokesMacroRestore.

I’ve tried it with the 233 key assignments on my computer, and it correctly restored them except for keystrokes associated with the full stop key on the numeric keypad. I can’t figure those out! But anyway, it’s probably best not to use them, because Ctrl-Alt-Numeric-Full stop generates Ctrl-Alt-Delete, which calls up the Windows Task Manager!

I’ve now also created KeystrokesSaveAll, which also saves the keystrokes assigned to special characters (symbols) and styles and fonts and for Word’s own commands, such as AcceptChangesSelected, and KeystrokesRestoreAll to restore them all (see below).

What I also haven’t done is create a Restore macro for assignments to macros in other templates. As I’ve never used macros anywhere other than in my Normal template, I don’t have any way of trying such a system out. If you want this macro and/or the Restore macro for characters and styles, do get in touch.

Sub KeystrokesMacroSave()

Sub KeystrokesMacroRestore()
[bookmark: _Toc55977674][bookmark: _Toc164353531]Saving and restoring all your keybindings (keystrokes)
(Video: youtu.be/kVSnlm6Cvbs)

Word also has keybindings for special characters (symbols) and for styles and for fonts and for Word’s own commands, such as AcceptChangesSelected. The first macro, KeystrokesSaveAll, saves all of the keybindings you’ve set up (but not Word’s own keybindings) in a list in this format:

All key assignments
Saved: 253

Command	AcceptChangesSelected	Alt+Shift+A
Command	Bold	Alt+Ctrl+F7
Command	Bold	Ctrl+B
Command	CopyFormat	Alt+Shift+C
Command	EndOfDocument	Ctrl+Down
...
Font	Arial	Alt+Ctrl+Shift+A
Font	Times New Roman	Alt+Ctrl+Shift+T
...
Macro	Normal.NewMacros.AbbrSwap	Alt+Ctrl+F11
Macro	Normal.NewMacros.AccentPicker	Alt+]
Macro	Normal.NewMacros.AcceptFormatting	Alt+Ctrl+Shift+F
Macro	Normal.NewMacros.AddParentheses	Alt+0
...
Style	Heading 1	Alt+Ctrl+!
Style	HTML Sample	Ctrl+Shift+F8
...
Symbol	 	Alt+Ctrl+Space
Symbol	–	Alt+=
Symbol	—	Alt+Shift++
Symbol	—	Ctrl+Shift++
Symbol	×	Alt+Shift+X

It lists them in a new document, so to back up your keystrokes, you could save this Word file (if you use F12, Save As, it will offer you the name All key assignments).

Now, if, say, you want to set up the same macros and keystrokes on another computer, or you’ve had to reinstall Word from scratch, you can copy the macros across into VBA, open your All key assignments file and then run KeystrokesRestoreAll.

This macro doesn’t automatically restore all the items in your list; rather it starts from the current item in the list, i.e. the line where you have placed your cursor.

It also has the feature that if you just want to restore one or two items in the list, you can create a new line consisting of just ‘#’ and KeystrokesRestoreAll will start from the list item at the cursor, and continue until it hits the line with the ‘#’.

What I haven’t done is create a Restore macro for assignments to macros in other templates. I’ve never used macros anywhere other than in my Normal template, so I don’t have any way of trying such a system out. If you want this facility, do please get in touch.

Using it to transfer your macros to a new computer
(These are later instructions after trying it myself!)
Far and away the easiest way is to transfer your Normal template, but if you don’t want to do that for any reason...

You copy and paste the contents of the VBA area (i.e. all your macros) into a Word file, then copy and paste it into the new computer’s VBA.

Easy, except that you then have no keystrokes!

OK, so you need to run KeystrokesSaveAll, save the file with the list of keystrokes it creates and transfer that file over to the new computer, open the file and then KeystrokesRestoreAll on the new computer.

If you have a lots of keystroke (I had 269 when I tried this on my laptop!), then after you have run the KeystrokesRestoreAll, you can get a list of the keystrokes it has created on the new computer by running KeystrokesSaveAll on the new computer; you’ll probably find it hasn’t got all the keystrokes (mine only had 190!).

What I did then was add a highlight to the original list (the 269), then copied the new list (my 190) and sorted the whole file, using SortIt or Word’s own sorting thing. I could then see which keystrokes hadn’t gone across.

So, you can copy these ‘missing’ keystrokes (i.e. the 269−190 = 79) and run KeystrokesRestoreAll with those. If it errors on one of them, move the cursor to the next one and run the macro from there downwards (it gives you the option to do that).

Or you can just add them manually – at least you’ll know which keystrokes are missing!


Sub KeystrokesSaveAll()

Sub KeystrokesRestoreAll()

[bookmark: _Toc55977675][bookmark: _Toc164353532]Have you got the latest versions of the macros?
If you are concerned that there might be some later versions of the macros you are using, this macro will check for you. To use it, open VBA, select all (Ctrl-A), copy, close VBA, open a new Word file and paste your macros into this new file.

When you run the macro, and it will download a copy of the MacroList file from my website, then compare that list with your macros and generate a list of those that are up to date and those that are out of date.

If you already have an up-to-date copy of MacroList, simply open the MacroList file, then proceed as above. The macro will see that there’s a copy of the MacroList already open, and will use that, rather than downloading a new copy.

Sub MacroVersionChecker()


[bookmark: _Toc55977676][bookmark: _Toc164353533]Update a macro, but keep the keystroke
This macro allows you to replace a macro with a later version while still keeping the original keystroke that was assigned to it.

A: To copy the new macro into VBA...
1) Open the Word file containing the new version of the macro you want – probably my TheMacros file.

2) Using Word’s Find facility, search for ThisMacro() (or whatever your chosen macro is called).

3) Check that the cursor in the title line of the new macro, i.e. the Sub ThisMacro() line.

4) Run the MacroUpdater macro and select Option 1, to copy the macro.

5) Open the Macros window (Alt-F8), select the macro name and click Edit.

6) Select the whole macro by double-clicking in the tiny thin white margin just to the right of the left-hand grey border.  (When the cursor is in the correct place, its icon will change to a white arrow, pointing up and right.)

7) Press Backspace to delete the macro and Ctrl-V to paste in the new version.

B: To restore the original keystroke...
1) Place the cursor in the title line of your macro: the ‘Sub’ line.
2) Run the macro and select Option 2, to restore the keystroke.
3) Check that the keystroke is the one you intended, and click OK.

Sub MacroUpdater()

[bookmark: _Toc55977677][bookmark: _Toc164353534]Table of contents updater
This macro is designed specifically to update the ToC in this book. However, it should hopefully provide a blueprint for doing something similar in a document of your own.
There is a Word command to update the ToC (UpdateTableofContents), but this goes a bit further in that it updates it and then deletes certain unwanted lines in it and also highlights some of the lines in yellow to make them stand out.

If all you want is UpdateTableofContents then go to Customize Keyboard, click All Commands in the LH column and find UpdateTableofContents in the RH column and assign a keystroke to it.

Sub TOCupdate()

[bookmark: _Toc55977678][bookmark: _Toc164353535]Macro list indenter
The purpose of this macro is to take a macro listing and apply indents to the structure (Do loop, For-Next loop, If-Else-EndIf etc). As well as making the program easier to read, it also does a check to see whether there are the right numbers of opening and closing of structures, and warns you if it thinks that there is a structure error, e.g. a For without a Next.

Sub MacroIndent()

[bookmark: _Toc55977679][bookmark: _Toc164353536]Wiki page editing
To aid the creation and editing of Wiki material, this set of three macros allows you to create and edit material in Word with visible styles and formatting. Running WikiSwitch converts the currently loaded file back and forth between Word styles and the special codes that the Wiki uses.

The WikiSwitch macro looks at the active document to see if it can find a pair of equal signs followed by a new line. If so, it assumes it must be ‘Wiki text’, i.e. the pure text file of a (section of a) Wiki page, and it calls the WikiToStyles macro which converts the Wiki text to styles (Word’s default styles: Heading 1, Heading 2 and HTML sample) plus Bold and Italic formatting.

If, however, it does not find the tell-tale pair of equal signs, it assumes that it’s in the Word styles listed above and calls the macro WikiToText which converts the file to Wiki text format.

So, if you want to prepare material for the Wiki, simply do so in Word, using the styles mentioned, save the Word file (just in case!), and then run this macro. You should then be able to simply Select All, Copy and then Paste it into the Wiki edit box.

To edit an existing piece of Wiki material:
– click the Edit tab at the top of the Wiki page (or the [Edit] tag at the side of a section)
– select and copy all the text in the editing box
– paste it into a blank Word file
– run WikiSwitch to convert to visible formatting
– edit accordingly
– run WikiSwitch again to turn it back to Wiki text
– copy and paste the Wiki text back into the Wiki.

(You may be wondering about the first five strange-looking lines of code in each of the two main macros. These were used to avoid confusion when this actual macro was put up on a Wiki page. The codes were used to make up the sets of equal signs, the sets of apostrophes and the <pre> and </pre> codes. If the actual codes had appeared in the macro listing, they would have been acted upon when the Wiki page was saved, and the whole page would have been messed up.)

Here are the macros:

Sub WikiSwitch()

Sub WikiToText()

Sub WikiToStyles()

[bookmark: _Toc55977680][bookmark: _Toc164353537]Forum post editing
(This is written for the SfEP forum, but if other forums use things like bold text to put bold in your forum posting then this might work for you. If not, tell me the format codes that your forum uses.)

If you are fed up, as I was, with having to write your posts in the forum’s own Message box, with all its b, i, u etc in square brackets, and without your Word editing tools, then this macro will help.

You can then prepare your posting in Word, with bold and italic, you can have subscript and superscript and underline and strike-through and red and blue and even computer code (not everyone’s taste!).

So, you compose the posting in Word, then run the macro. It adds the special forum codes, and copies the whole of the text, ready for you to just Ctrl-V it into the Message: box on the forum.

If you then want to edit it in the Message box, fine. However, if you then decide you want to do some more editing in Word, simply copy and paste the forum-format text over into a new Word file, run the macro, which will convert it back to normal Word format. Do your edits, then run the macro again to convert it to forum-format.

But the same macro also works in reverse. If you start composing a posting on the forum, then realise that you want to use Word’s formatting facilities and/or are feeling bereft without all the shortcuts you use in Word, e.g. MultiSwitch, then do a Ctrl-A and Ctrl-X; go to Word, open a new document, Ctrl-V, and carrying on editing.

If you’ve already applied some formatting in the forum, that’s OK. In Word, when you run the macro, it detects the forum codes, and converts them to actual bold, italic, red, blue etc – so you can edit the posting with visible formatting.

And for those who are frustrated by seeing spaced hyphens and non-curly quote marks, the macro converts those while it’s at it!

Sub ForumTextFormat()

[bookmark: _Toc164353538]WhatsApp post editing
This macro allows you to compose WhatsApp postings in Word, including bold and italic , and then run the macro, which changes the formatting to using underlines for italic and asterisks for bold, etc., then it copies the text. So you just click in the WhatsApp window and Ctrl-V to paste.

Running the macro a second time removes the special codes.

It also now does strikethrough and monospaced fonts for listings. Use Courier New font in Word, if you want monospacing.

Sub WhatsAppTextFormat()

[bookmark: _Toc55977681][bookmark: _Toc164353539]Adding elision to index
Yes, I do know that, in an index, the entry:

electroplating		32, 33, 34, 64

has a different meaning from

electroplating		32–34, 64

However, for one particular index – a list of which authors were cited on which pages – someone wanted all the entries elided, so the macro below does just that.

Sub IndexElide()

[bookmark: _Toc55977682][bookmark: _Toc164353540]Basic indexing (1)
(This is the more difficult of the two. In fact, two years after having written it and used it, I now can’t get it working, so I suggest you look at version 2 first.)

This is not proper indexing; rather it’s a macro that highlights every occurrence of each of a set of words/phrases in a text and it creates a list of all the page numbers on which each one occurs. So it assumes that you’ve got two files: (a) the text of the book (b) a list of words/phrases to be ‘indexed’.

The macro was written for a specific pair of files, so if your files are in a different format, you (or I!) may need to do a bit of tinkering.

(a) Word list:
The list was in this format:

Aberration of light, 133
Absolute space, 41
Abstraction, 9, 18
Acceleration-velocity split, 34
Acceleration, 33
Action at a distance, 50, 146, 233

i.e. the author had already inserted one or more page numbers, so the macro ends up with:

Aberration of light, 133: 133
Absolute space, 41: 40, 41, 41, 42, 42
Abstraction, 9, 18: viii, 3, 14, 14, 18, 18, 33, 33, 67, 161
Acceleration-velocity split, 34: 35
Acceleration, 33: 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 36, 37, 40, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 44, 44, 44, 44, 45, 48, 49, 49, 49, 49, 49, 50, 50, 51, 51, 51, 53, 56, 57, 57, 60, 151, 160, 161, 162, 162
Action at a distance, 50, 146, 233: 146, 147, 149, 233, 236, 237, 241

To get rid of the original numbers in this list above, they can just do a wildcard F&R, finding

, [0-9, ]{1,}:

and replacing it with just a colon, say.

(b) The text file
For this job, the text was exported out of a PDF file, and I first had to F&R the ‘W’ and ‘V’ that had appeared instead of the ‘fi’ and ‘ff’ ligatures (details in the FRedit Library). What I also had to do was to ensure that there was an identifiable page number on every page. Thankfully, there was: at the bottom of each page, it said, ‘Page Proof page 23’ or whatever. So this marker text is identified in one of the first few lines of the macro.

The other thing that needed identifying, was what exactly was I going to search for from each line of the list that the author supplied. In this case, he had put a convenient comma at the end of each word/phrase. This is set in the macro as: searchDelimiter = ",".

Also set at the beginning of the macro is the delimiter to be used in the list of page numbers. I chose listDelimiter = ", ", but you might not want the space, i.e. just listDelimiter = ",". So the latter would give ‘40,41,41,42,42’ instead of the original ‘40, 41, 41, 42, 42’.

It might also be that you only want it to say just ‘40, 41, 42’ rather than ‘40, 41, 41, 42, 42’. If so, set repeatNumbers = False.

Hint: Because the macro keeps chopping and changing back and forth between the two files, it’s better to do a Window–>Arrange All before running the macro so that both files are visible on screen at the same time.

Sub BasicIndexer()

[bookmark: _Toc55977683][bookmark: _Toc164353541]Basic indexing (2)
This is not proper indexing; rather it’s a macro that highlights every occurrence of each of a set of words and creates a list of the different pages on which that word (or phrase) occurs.

The basic assumption is that you’ve scraped the text out of the PDF and placed it in a Word file. Then you have to add manual page breaks to make sure that the Word page numbers correspond to the page numbers of the book (if you need a hint how to do that, give me a shout, but you can probably do a lot with intelligent use of F&R). To index the prelims, you’ll have to have two separate files, one for the prelim pages and one for the main text.

To operate the macro, place your list of words/phrases at the very end of the Word file in a vertical list:

anchor
boat
caulk
degrease
etc

Place the cursor on the first item to be indexed. It will then start from there and index each word/phrase in turn. So, if you later think of other words/phrases, just add them to the bottom of the list, index them and then cut and paste them into the correct place in the list.

anchor	1, 4, 67
boat	3, 56, 97
caulk	17
etc

At the beginning of the macro is the delimiter to be used in the list of page numbers. I chose listDelimiter = ", ", but you might not want the space, i.e. just listDelimiter = ",". So the latter would give ‘40,41,41,42,42’ instead of the original ‘40, 41, 41, 42, 42’.

It might also be that you only want it to say just ‘40, 41, 42’ rather than ‘40, 41, 41, 42, 42’. If so, set repeatNumbers = False.

Sub BasicIndexer2()

[bookmark: _Toc55977684][bookmark: _Toc164353542]Playing card suits
Someone had symbols in the text for clubs, diamonds, hearts and spades, and wanted to convert them to cx, dx, hx and sx.

	* A 7				* K 9 4 3
	* A J 8 7 6			* K Q 10
	* K 9				* A 10 4
	* Q 9 6 2			* A K 3

The symbols are fields, so I was able to write a short macro to convert them:

Sub SuitToText()


[bookmark: _Toc55977686][bookmark: _Toc164353543]Mark file as ‘final’
Apparently, there’s a feature where you can ‘mark the file as final’. This means that when you send the file to someone and they try to edit it, it warns them that ‘An author has marked the file as final to try to discourage editing’. This macro switches this feature on and off for the current file.

Sub MarkFinalOnOff()

[bookmark: _Toc55977687][bookmark: _Toc164353544]Maximize/minimize the ribbon
N.B. This macro is redundant! It’s just as easy to assign a keystroke to Word’s own ToggleRibbon command! So in the Customize Keyboard window, in th LH column, click on All Commands, then in the RH column, find ToggleRibbon, and apply your chosen keystroke.

If you want a keystroke to maximize and minimize the ribbon, here it is (reproduced in full as it’s only one line!):

Sub RibbonMinMax()
ActiveWindow.ToggleRibbon
End Sub

[bookmark: _Toc55977688][bookmark: _Toc164353545]Select this macro text
When you want to copy a macro out of ‘TheMacros’ file, to paste into Visual Basic, click in the middle of the macro text and run this macro.

Sub MacroSelect()

[bookmark: _Toc55977689][bookmark: _Toc164353546]Obfuscate/anonymise/enigmatize a file
(At the end of this section, there’s a FRedit version, which is quicker and easier.)

If you want to do a public demonstration of working on a Word file, you can’t use a file belonging to a client (well, certainly not without their permission). However, if you first use a randomize function, you can make the text totally unrecognisable, even if you give the student a machine-readable copy of the file to use for an exercise.

This macro goes through, randomizing every character, though it does keep vowels as vowels, which helps to make the finished file at least vaguely like a human language. For example, the paragraph above could become (but it’ll be different each time you do this):

Thik matdo roek dfcoumn, pannogikilh enedn npatarmes, ctousn if goej veec notevj an vosets, ldinv selbf fo nale dhe riwinfes kije av geamg saquekl siqe a tunaj sahhuafe. Kob etawhse, lwe tamaclaks ajove fouqn hetode (nur iq’sq he sicmetehk ealp hiqe gou co sdir):

This isn’t a fast process (and beware, it’s not a reversible process, so work only on a copy!): on my five-year-old desktop computer it works at about 1000 words per minute.

The macro has two options. You can choose to (1) leave numbers unshuffled, so dates like 2017 stay as is, or if you shuffle them, they might become 6344, (2) leave certain heading levels unshuffled, e.g. leave all Heading 1 and Heading 2 levels unshuffled, and therefore readable.

(1)
shuffleNumbers = True (or False)

(2) either (work on all text)
' notTheseStyles = "Heading 1,Heading 2"
notTheseStyles = ""

or (leave headings 1 and 2 as is)

notTheseStyles = "Heading 1,Heading 2"
' notTheseStyles = ""

But on long files, it takes so long that I developed a FRedit version:

| Enigmatiser
¬a|ù
¬e|a
¬i|e
¬o|i
¬ù|o

¬t|ù
¬n|t
¬s|n
¬h|s
¬r|h
¬d|r
¬l|d
¬c|l
¬m|c
¬f|m
¬w|f
¬g|w
¬p|g
¬b|p
¬ù|b
^32E'| a
^pE'|^pE
^32E | a^32
 o | a^32
gg|ll
ii|oo
aa|ee
dd|nn
mm|ss

(But this, of course, could be decyphered, in theory!)

Sub Enigmatizer()

[bookmark: _Toc55977690][bookmark: _Toc164353547]Check the length of tweets
If you are proofreading/editing tweets, it’s important to check that none are more than 140 characters long, including spaces. If you click in a tweet and run this macro, it beeps if the tweet is short enough, but highlights the first 140 characters if it’s too long, so you can quickly see how many characters you need to lose. (Ctrl-Z is then the quickest way to remove the highlighting.)

If a bit of text is selected, the macro takes this as a signal to check all of the tweets from the current tweet, right to the end of the file. Any tweets that are too long have 140 characters highlighted, but if all the tweets are OK, you get a double-beep to reassure you that all is well.

Sub TweetCheck()

[bookmark: _Toc55977691][bookmark: _Toc164353548]Manage your autocorrect items
The first macro creates a list of all existing autocorrect items. You can save this list as a backup, if you like.

The second macro can be used to add extra items to your autocorrection list, but it can also delete all existing items. So you can keep a backup list, edit that list, and then delete-and-add all the items, so as to update the existing list.

Sub AutoCorrectItemsList()

Sub AutoCorrectItemsDeleteAdd()

[bookmark: _Toc55977692][bookmark: _Toc164353549]Embolden first occurrence of certain words
The request was to go through a list of words and find the first time each of those words occurs in the text, and make it bold (so I’ve added the option to also highlight it and/or font-colour it). Simply put the list pof words at the end of the text, and place the cursor in the first word in the list.
[bookmark: _Toc55977693][bookmark: _Toc164353550]Launch your macros from a menu
You can launch your macros from a list on screen, by number or by letter:

[image: ]

You can customise the macros on on the menu, by editing the first few lines of the macro:

myList1 = "d=DocAlyse, h=HyphenAlyse, w=WordPairAlyse"
myList2 = "p=ProperNounAlyse, i=IZIScount, z=IStoIZ, s=IZtoIS"
myList3 = "l=SpellingErrorLister, e=SpellingErrorHighlighter"
myList4 = "u=UKUScount, f=FRedit"

Feel free to chop and change the list, but be sure to maintain the pattern of punctuation.

Sub MacroLauncher()
(was called MacroMenu)

Mac users! If this macro generates an error at the line Application.Run mName, then use this alternative macro.

Sub MacroMenuForMac()

[bookmark: _Toc164353551][bookmark: _Toc55977694]Macros for downloading macros
[bookmark: _Hlk104988915]There are three macros created for this purpose, but you need to be careful in that that the macro names must be correctly ‘cased’; if you want, say, CaseNextChar, it’s no good trying to use ‘Casenextchar’; this will fail to find the macro you’re looking for.

So, rather than typing out the name, try to copy the macro name from a PDF or a web page and paste it into a Word file, and then just click in the name and run the relevant macro.

The first macro, MacroFetch, creates the relevant URL and launches it to our website.

The second macro, MacroFetchUpdate, is for use if you’re wanting to update a macro that has a keystroke already allocated to it. So, as with MacroFetch, have the macro name in a Word with the cursor in the name, and run the macro. It will open a new Word file and type out both the name of the macro and its keystroke. Then it takes you to the web page, from which you can select the macro and copy it.

Next return to the Word file and use the Macros window (Alt-F8 or Option-F8) and delete the current version of the macro that you’re upgrading. Go into VBA and paste in the new version of the macro and then run MacroFetchUpdate again. This time, instead of fetching the macro, it will read the keystroke from the Word file and allocate it to the new version of the macro.

In summary:
1) Place cursor in the macro-to-be-updated name in a Word file.
2) Run MacroFetchUpdate, and the web page appears.
3) Select the macro on the web page and copy it.
4) Open the Macros window and delete the macro-to-be-updated.
5) Run MacroFetchUpdate. Done!

The third macro, MacroNameToLink, takes the macro name, as before, and simply creates the relevant URL and puts it into the clipboard, from where it is ready to be pasted for whatever purpose. So, you could paste it into an email to give to someone, or paste it into a web browser to examine the macro.

Sub MacroFetch()

Sub MacroFetchUpdate()

Sub MacroNameToLink()
[bookmark: _Toc164353552]Use Word as a simple slideshow system
(Video: https://youtu.be/gOBpOMbIogU)

N.B. Two of these macros user special variables that you have to put at the top of the VBA window, above the very first macros. So add two lines:

Private pbShowHide As Boolean
Private pbTitlesFile As Document

If you’ve seen any of my post-April 2020 YouTube videos, you’ll see that while I still use Word to display my titles for each talk, I now use a system that has all the titles in very light grey colour, so that they are almost invisible. Then as I go through the talk, I reveal the titles one by one.

This is done with a suite of five macros:
TitlesShowHide – either turns all red, blue and black titles to light grey, lighter grey, even lighter grey, i.e. hides ALL the titles or turns light grey, lighter grey, even lighter grey to red, blue and black, i.e. reveals ALL the titles
TitlesReveal – reveals one title at a time, i.e. changes grey to colour.

Note: Until you have done a TitlesShowHide on the file, TitlesReveal doesn’t know which file it’s working on. i.e. TitlesShowHide stores the name of the ‘working’ file in the variable: pbTitlesFile. This means that your cursor doesn’t actually have to be in your titles file in order to reveal the next title.

FixedFontRed, FixedFontBlue, FixedFontBlack – Use these three macros to make a title red, blue or black, but actually they are very slightly lighter than those colours. The idea is that any titles in these three colour will remain in that colour despite using Show/Reveal/Hide. i.e. they are fixed colour titles.

A new one: FixedFontSwitch is probably easier than having the three macros for fixed colour. It cycles through the three fixed colours.

I said that TitlesReveal shows one title at a time, i.e. one paragraph at a time. However, if there’s a fixed space in the title, then it only reveal up to the fixed space, so that you can reveal a title a section at a time.

I’ve used proper red, blue and black for the disappearing titles because that way, you can use the ColourPlus and ColourMinus macros to apply and change the colour of your titles.

N.B. If you do use ColourPlus and ColourMinus, make sure that the first item in the macro is:

myCol(0) = wdColorBlack

and not 

myCol(0) = wdColorAutomatic


Sub TitlesShowHide()

Sub TitlesReveal()

Sub FixedFontRed()

Sub FixedFontBlue()

Sub FixedFontBlack()

Sub FixedFontSwitch()

[bookmark: _Toc55977695][bookmark: _Toc164353553]Load one (or more) of several files
This is a macro I wrote for my own use, but others might find it useful. I realised that there were several different macro-related files that I often needed to load quickly and easily. They are all in the own folder (zzzTheBook), so I run this macro, then type (in any case) a letter or two to select file(s) I want to load.

It not only loads them but it has the facility to set the position and size of the window.

It can also optionally, having loaded the file, automatically jump to a temporary bookmark (see macro BookmarkTempAdd).

It can also optionally, having loaded the file, automatically jump to specific piece of text.

Here are two items from the macro, as supplied (you obviously need to customise it for your files and preferences):

  Case "A"
    Documents.Open FileName:=myRoot & "ComputerTools4Eds_Appendices.docx"
    ActiveDocument.ActiveWindow.WindowState = wdWindowStateNormal
    Application.Resize Width:=1100, Height:=420
    Application.ActiveWindow.View.Zoom.Percentage = 160
    gotoBM = True

So, if I type ‘a’, it load file appendices file for this book, and then it jumps to the bookmark (marking where I was last doing some work on it). the gotoBM = True bit is what makes it do that.

The third and fourth lines set the size of the window (not the absolute position on the screen) and the zoom state.

  Case "BM"
    Documents.Open FileName:=myRoot & "ComputerTools4Eds.docx"
    ActiveDocument.ActiveWindow.WindowState = wdWindowStateNormal
    Application.Move Left:=20, Top:=0
    Application.Resize Width:=1200, Height:=350
    Application.ActiveWindow.View.Zoom.Percentage = 160
    findThis = "1. Bookmarks"

This is the first of the two files to be loaded if I click ‘bm’ (book + macros). The highlighting sets the top lefthand corner position of the window. (N.B. On some Macs, this will generate an error because the Application.Move command is not available, sorry!)

And, finally, the findThis = "1. Bookmarks" bit makes it jump to the first occurrence of that bit of text, i.e. the start of the macro menu, where it lists the single-line description of all 800 (or whatever) macros.

You need to set this line to point to you folder:

[bookmark: _Hlk47796967]myFolder = "C:\MyFiles2\WIP\zzzTheBook\"

image5.png
@ Font colour: 6 (added)

Bold (added)

Halic (added)

Size: 18 (changed from style size)

Continue?





image6.png
@ Style: Heading 3

Font colour: 2 (style)

Mixed itaic

Mixed size

Continue?

No cance





image7.jpeg
Not in Dictionary;

Thanks for yesterday’s Zoom meeting whihd, | [Cinore onee
though ad hoc (sorry!) was really good —well, I —
o i ignore |

.| [ 2ddto Dicionary |

Suggestions:

change |
Change All

AutoCorrect

Dictionary language: | Engish (United Kingdom)

Options. Undo Cancel





image2.jpeg
Macro name:

bbradd

AbbrSuap
AccentPicker
AcceptFomating
AcceptspeafiTrackChange
AcronymbefinitonLister
Acronymister
AcronymTosmalCaps
addFeys
AddLetierkeys
Additag

Macrosin: | Al active templates and documents.

Descrption:





image8.png
(wl L

[ rome inset  Pagelajout  References  Mailings  Review  View  Mathlype  Developer  Add-ins v

Page: 52 of 133 | Words: 77,318 | English (UK) | *3 |





image9.wmf
(

)

-

11

ut=+U

j


oleObject1.bin

image10.wmf
(

)

(

)

2131

φ

05

utut.U

--

==-


oleObject2.bin

image11.wmf
φ

0.5

U

-


oleObject3.bin

image12.wmf
φ

1.5

U

-


oleObject4.bin

image13.wmf
(

)

+

11

0

ut=


oleObject5.bin

image14.wmf
(

)

(

)

++

2131

1.5

ut=ut=U

j

-


oleObject6.bin

image3.jpeg
Al active templates and documents.





image15.png
et Pesclyout  Rerncs Redow Vi Male  Deylaper  Adans
(N (o} (s (R} ) Y L X

fozs 23 2m





image16.png
- 1_Instructions.docx
mW- 2_Macro.docx
m- 3_Sample_Text.docx
m- 4_Sample_List.docx
m- 5_Library.docx

\% IS_words.docx
\ﬁ 1Z_words.docx

O 0000





image17.png
@ 1_Instructions.docx
@ 2_Macro.docx
@ 3_Sample_Text.docx

@ 4_sample_Listdocx
@ 5_Library.docx

@ 1Z_words.docx

B> Exo B0 B B BRo B

1017 selected, 1.4

—_—

eeo0o0o0

Open With

Move to Bin

Get Info

Rename

Compress *IS_words.docx"
Duplicate

Make Alias

Quick Look

Copy
Share

Tags...
Show Preview Options

Quick Actions
© share.
© send with Transfer...
© send for signature
© Copy Dropbox Link
© Version History

© View on Dropbox.com
© View Comments

© Open in Dropbox

© smart Sync





image18.jpeg
iy

* Open

- 1Z_words.docx

 Always Open With

v

Move to Bin

Show Inspector

Rename

Compress “IS_words.docx”
Duplicate

Make Alias

Slideshow “IS_words.docx”

S

Copy “IS_words.docx" as Pathname
Share >

Tags...

e

Show Preview Options

i Quick Actions >
. @ share... '
© Ssend with Transfer...
© send for signature
© Copy Dropbox Link
@ Version History

L@

EmU>E<> Eo> B





image19.png
[ fome  share  view
0 b [dmorctor X pelte - ) ?%? ¥ % =2]
Pinto Quick Copy  Paste Beopytor =DRename  New Properties select
‘acess [Beoprto- = folder SN
Clipboar Organise New Open
« v 4 [ « Myfiles2 > WIP > zzzTheBook > aFRedit v O Searchaf. P
[ casStorterMacro A Name. Datemodified  Type
[ Trining sesion: @)1 nstructions W18192 Mier
[1] zzzTheBook )2 Macro 14/11/201800:06  Micr
PR )3 Somple Tet /0320181912 Micrd
) 4 Somple List /0320181912 Micrd
5 This PC )5 Library 250720181640 Micr
3D Objects: 3 Redit W19 Com
I Desktop )15 words /0320181917 Micr
Documents % 12 words /020181917 Micr
macros 411720180510 Adok
o 2 R
b Mcie ol

10items  2tems selected 341 KB Stote: @ Shered





image20.png
Ll tome  share  view

Bl ,A EMoveto~ | % Detete =

PntoQuick Copy Pate 1 [Copyto~ | =Remame

Clipboard

Organise

€ v

1] assStrte
| Trsining session:

] zTheBook
@ Onebrive

= This PC
9 3D Objects
I Desktop
Documents

3 Downloads
N Mucic

instructions
2 Macro
3 Sample Tt
4 Sample List
s Library
3 FRedit
15 words
Zwords

) macros
oy
v

10items  2tems selected 341 KB Stote: @ Shered

v @ B
® | SearchaF.. P





image21.wmf
o

22C

T

=


oleObject7.bin

oleObject8.bin

image22.wmf
1

22C

°

T

=


oleObject9.bin

image23.wmf
2

29C

°

T

=


oleObject10.bin

image24.wmf
295K

Q

=


oleObject11.bin

image25.png
o~ CleanupList
£~ FinalDoMacros

h—HighlightAlIETs
hh - HighiightThe
i~ InitialDoMacros

Which it (etter)?

_Cares |





image26.wmf

oleObject12.bin

image27.png
1-Single
2-Words

3- Double

4-Dotted

5 - Thick

6-Dash

7- DotDash

8- DotDotDash
9-Wavy

10- DottedHeavy

11 - DashHeavy.

12.- DotDashHeavy
13- DotDotDashHeavy
14- WavyHeavy

15 - DashLong

16 - WavyDouble

17 - DashLongHeavy

He





image28.emf

image29.emf

image30.emf

image31.png
mockup: 2
mockup: 3
modcup: 2

mock<dash>up: 0
moddup: 0





image32.png
OK? (Add a space i necessary)

oK

[mock upl





image33.png




image34.png
A& ®
W Automatic
Theme Colors

% More Colors,

@ Gradient ,




image4.png
IMicrosoft Word 16.0 Object Library
/OLE Automation

IMicrosoft Office 16.0 Object Library

+
Priorty
] UNSAVED: Project .
] AccessiityCpladmin 1.0 Type Lbrary 4
] Acrabat Access 3.0 Type Lbary

] AcoBrokerLb

[l artue 1S Tume ey v
<

Microsoft Speech Object Lbrary

Location: C:\WINDOWS\System32Speech\Commonsapi.cl
Language:  Standerd





image35.png
RESTART [1]

AND [2+]
OR [3-/]
Check Caps [6°]

EDIT [0]

oK

ighlight-irack





image36.png
Textto search:

oK





image37.png
G- Notin glossary.
T-Notin chapter

L-Notin the references it
LL - Butxox s

H-Have | caught meaning?
M- Meaning?

R Readers know?
A-Acronym

S—Sory?

C-Notcited

V-Noverb

oK





image38.png
Comment Add Menu

= Equation not cited
Noverb.

/S comment

/5: format.

d= Ditto

Nowt





image39.png
1,"is not i the references lst.
L,"is not in the references lst. (But ...

"~ Not cited in the text.

b~ Have | caught the intended meaning?
1~ Will the readers know what this means? ..

He

R, Will readiers know what 1 refers to?
" Willthe readers know this acronym? If
5"~ Sony, but | can't work out the

Comment?





image40.png
+4 = Multiple spaces

1= Formatting
unctustion —





image41.png
2-DocAlyse.docx
3-TheMacros.docx

1- ComputerToolstEds.docx
_Cares |

‘Compare which files?

M-Moves T-Tables S-Spaces C-Case
F-Formatting W - Word or character





image42.png
im0
5-1ZISCount (i)

6-IStolZ (2)

7-1ZtolS (s) ®

10— UKUSCount (u)

11-FRedit ()





image1.jpeg
o[~
Tssue Resolved 0

317 clicks hos
correced the error

W Merlovenctein com




