[bookmark: _Toc506821303]FRedit – Not in here!
There are separate files of instructions: FRedit_Instructions and FRedit_Library.
DocAlyse
(Mac users! Note that on some [older?] Macs, DocAlyse generates a ‘program too large’ error. The solution is given below.)

[bookmark: _Toc506821321][bookmark: _Toc506821307]The aim of this macro is to help you to assess a Word document by counting the number of times the author uses various spelling, punctuation and formatting conventions.

To do this, DocAlyse creates a copy of the currently open Word file and generates a list such as this:

(My explanatory comments are added in italic but it’s the macro that has made all the zero item non-bold .)

(one to nine, 10 upwards or one to ten, 11 upwards)
ten	35
10	20

(commas in thousands)
nnnn	21
n,nnn	3
n nnn	–

serial comma	2
no serial comma	30

single quote	90
double quote	2

etc	19
etc.	1

et al	1
et al.	9
et al (italic)	–

i.e.	2
ie	1

e.g.	1
eg	1

(different formats for initials)
J. L. B. Matekoni	–
J.L.B. Matekoni		–
J L B Matekoni	17
JLB Matekoni	9

p/pp. 123	–
p/pp.123	13
p/pp 123	1
p/pp123	4

UK spelling (approx.)	37
US spelling (approx.)	1

-is- (approx.)	102
-iz- (approx.)	4

data singular	2
data plural	2

(alternative past participle spelling)
-rnt -elt	–
-rned -elled	10

fig	1
figure	8
Figure	1

Chapter		0
chapter	2

spaced units (3 mm)	3
unspaced units (3mm)	–

focus...	6
focuss...	–

co-oper...	–
cooper...	2

diacritics	3

N.B. The ‘JLB Matekoni’ option can get exaggerated in number because it will pick up things like: ‘the US Department of Energy’ and think that it’s a person with un-full-stopped initials.

I’ve added the option to show a wildcard Find sequence to some of the results, e.g. JLB Matekoni, so if you see only a couple of examples of one item and want to find them, you can copy and paste the relevant wildcard find into Word’s Find box.

If you want these codes to show, then at the beginning of the macro, change the line to:

showWild = True

Thiers Halliwell has sent me a set of medical abbreviations to add to DocAlyse. There are rather a lot, and if you don’t want them, it’ll slow down the operation of the macro, so I’ve taken the unusual step of putting it as a separate piece of code, which medics will need to copy and paste into the middle of the macro in the space indicated.

Some extra items have been added to DocAlyse, as follows.

It now counts OK, ok, Ok, okay – OK?!

For percentages, it provides:
unspaced, e.g. 9%	2
spaced, e.g. 9 %	3
9 per cent	5
9 percent	3
nine per cent	1
nine percent	1

Then there’s edition/editor(s):
ed	2
eds	3
edn	4
ed.	4
eds.	2
edn.	3

For feet and inches (or minutes and seconds):
feet (straight) 9'	3
inches (straight) 9"	2
single prime: 9′	6
double prime: 9″	4

It already did a count of ‘proper’ ellipses against trios of full stops (periods), either spaced or unspaced, but I’ve now added (for proper ellipses only) a count of how they are spaced: before, after, both or neither.

This same count of spacing is also made for solidus (forward slash), em dash, en dash and hyphen, although I don’t, of course, count unspaced hyphens.

Sub DocAlyse()

N.B. This next ‘macro’ is not a macro in its own right; it’s the extra bit to be inserted inside DocAlyse proper at the place indicated:

Sub DocAlyseMedBits()

[bookmark: _Toc532109380]Checking Hypenation of Word Pairs
(Video: New: youtu.be/LHWUVKgU-hs – Old: youtu.be/olyCyDzCDe8)

(N.B. This macro is complementary to WordPairAlyse, which is worth checking out, if you’re a consistency-freak, like me!)

This macro analyses the text to find how often word pairs are hyphenated, as two words or as a single word, for example: ‘run-off’, ‘run off’ and ‘runoff’, and it also now picks up words separated by an en dash, e.g. ‘blue–green’.

(N.B. If you are a FRedit user then look at the macro HyphenationToFRedit in the ‘Quicker Creation of FRedit Lists’ section below – it will save you a lot of time!)

Here’s a sample output:

	above-mentioned . . 2
	
	abovementioned . . 3
	

	afore-represented . . 1
	
	
	

	all-band . . 1
	all band . . 1
	
	

	art-methods . . 1
	
	
	

	attention-based . . 12
	attention based . . 19
	
	

	attention-guided . . 3
	attention guided . . 1
	
	

	attention-modulated . . 25
	
	
	

	band-pass . . 18
	band pass . . 1
	
	

	bell-like . . 1
	
	
	

	bell-shaped . . 6
	bell shaped . . 2
	
	

	between-coefficient . . 1
	
	
	

	binary-classification . . 1
	
	
	

	bit-stream . . 17
	
	bitstream . . 2
	

	block-based . . 28
	block based . . 1
	
	

	block-wise . . 1
	
	
	

	blue-green . . 2
	
	
	blue–green . . 4

	bold-faced . . 1
	
	
	

	bottom-left . . 1
	bottom left . . 1
	
	

	closely-packed . . 5
	closely packed . . 3
	
	

	contrast-based . . 1
	contrast based . . 4
	
	

	corner-based . . 1
	
	
	

	
	
	
	

As you can see, as well as counting the hyphenated word (and that includes triple and quadruple words – e.g. the much-over-used expression, ‘state-of-the-art’).

Any item that only occurs as one type of word pair is unlikely to be an inconsistency, so they are coloured light grey to help to draw attention away to the more important word pairs.

The macro also flags up (in red) any word pairs that occur in two form that are more likely to be inconsistencies, e.g. ‘co-axial’ and ‘coaxial’, which clearly need to be made consistent. Word pairs that occur only in columns 1 and 2 are probably OK: you could have, ‘With contrast based on iris size, you have to use a contrast-based assessment.’

One exception to this is, for example: ‘closely-packed’ and ‘closely packed’. Since many editors consider the hyphen to be superfluous with ‘-ly’ adverbs, these word pairs have also been coloured in red.

The macro also counts (and displays in blue) all the words starting with certain specific prefixes, whether or not they are appear in hyphenated form, for example:

	non-ambiguity . . 1
	
	
	

	non-attentional . . 2
	
	
	

	non-equal . . 1
	
	
	

	non-explicit . . 1
	
	
	

	non-gaussian . . 1
	
	
	

	non-head-mounted . . 1
	
	
	

	non-homogeneous . . 1
	
	nonhomogeneous . . 1
	

	non-ideal . . 1
	
	
	

	non-interest . . 1
	
	
	

	non-linear . . 24
	
	nonlinear . . 2
	

	non-linearly . . 3
	
	
	

	non-object . . 2
	
	
	

	non-oscillation . . 1
	
	
	

	non-overlapping . . 2
	
	
	

	non-parametric . . 1
	
	nonparametric . . 2
	

	non-reference . . 4
	
	
	

	non-roi . . 2
	
	
	

	non-uniform . . 1
	
	
	

	non-zero . . 4
	
	
	

To specify which prefixes you want checking, you can use the line:

myList = "anti,cross,eigen,hyper,inter,meta,mid,multi," _
 & "non,over,post,pre,pseudo,quasi,semi,sub,super"

In non-technical work, you might not need them all, so you could delete some of them from the list, although it won’t actually make a lot of difference to the overall speed.

This macro is a bit slow on large complicated files. I ran it on a 213,000-word file that had a lot of hyphenated words and it took 54 minutes, coming up with 2154(!) different hyphenated or prefixed words. Other timings: an 111k file with 1447 items took 20 mins, and 70k file with 520 items took just 5 mins. This is with a eight-year-old desktop computer that wasn’t top-of-the-range when I bought it.

As supplied, the macro includes numbers in its search, so that it will find, say, ‘2D-based’ or ‘9-mm’ or ‘non-90-degree’. You can speed up the macro up slightly, if you tell it not to include numbers, by changing the line:

includeNumbers = True

to False.

The other option is to display the results table whether or without lines. With lines, it looks like this:

	bell-shaped . . 6
	bell shaped . . 2
	
	

	between-coefficient . . 1
	
	
	

	binary-classification . . 1
	
	
	

	bit-stream . . 17
	
	bitstream . . 2
	

	block-based . . 28
	block based . . 1
	
	

	block-wise . . 1
	
	
	

	blue-green . . 2
	
	
	blue–green . . 4

which I find more difficult to read. This is set with:

deleteTableBorders = True

Hint: On a big file, the status bar should show you the progress, and if you do want to stop the macro from running, you should be able to do so by pressing Ctrl-Break. However, Word does sometimes ignore Ctrl-Break on a hard-working macro.

Sub HyphenAlyse()

[bookmark: _Toc17824264]Checking Word Pairs that are Not Hyphenated
(Video: https://youtu.be/LHWUVKgU-hs)

If, for example, your text uses ‘web site’ and ‘website’, but does not use ‘web-site’, then HyphenAlyse will not detect it. Unfortunately, it needs a lot more computing time to check every single pair of words in the whole text, to work out whether that word might also occur somewhere as a single word – just think how many different word pairs there are in this paragraph: ‘forexample’, ‘yourtext’, ‘textuses’, etc., all of which need to be checked.

Here’s the output for the first job that I tried this new macro on:

back up 1
backup 4

card reader 2
cardreader 1

down side 1
downside 1

floor plates 1
floorplates 2

flow chart 1
flowchart 1

ground plane 1
groundplane 7

ground shock 2
groundshock 12

load case 1
loadcase 4

load paths 1
loadpaths 13

push over 1
pushover 7

shock wave 6
shockwave 21

shock waves 2
shockwaves 3

under water 1
underwater 22

Before you run this macro, I strongly suggest you first run CopyTextSimple. This will generate a copy of your document, including all the text in any foot(end)notes and textboxes.

Here’s a list of timings for different sized files on my desktop computer, to give you some idea of how long you’ll have to wait:

6.7 kwords	1 min
22 kwords	4 min
86 kwords	38 min
159 kwords	91 min

In order to speed up the process, I’ve made it so that the macro can ignore a set of common words that (we assume) won’t form part of compound words. For example, when checking absolutely all the words, to scan the 86k file, the macro took 92 minutes (2.4 times as long).

However, if you decide that you don’t want to risk missing any compound words, you can tell the macro not to delete any words. You do this by changing mySet = 1, to mySet = 0, at the beginning of the macro.

Alternatively, you can be more selective which words are ignored, by creating your own list (or editing the existing list) and selecting mySet = 2 or mySet = 3.

Having used it a number of times, I noticed that it wasn’t finding any (or many) word pair inconsistencies after about 20–30% of the way through the book. this is because the most common word pairs, being numerous, will be spotted quite quickly – but you have to keep checking because there might be other, more obscure word pair inconsistencies.

But then, if they are obscure with, say only one occurrence each of the two-word and one-word forms, maybe it’s not worth waiting. So I have added a feature where it does, say the first 30% and then asks if you want to carry on for a further, say 10% – you can play around with this if you want to. When you say you don’t want to continue, it sorts the results it has found into alphabetic order. This is set up at the beginning of the macro with:

pausePercent = 30
stepPercent = 10

If you don’t want the macro to pause (because you’ll have to be in attendance to click it to continue) then set:

pausePercent = 100

i.e. don’t pause until you’ve done 100% of the job, i.e. don’t pause!

If you’ve already started the macro, but forgotten to open VBA to see the progress report, you can just press Ctrl-Break, and it will stop the macro running (temporarily). If you then click ‘Debug’, it will open the VBA window, then click Ctrl-G will open the Immediate Window. If you now click F5 (or click the Run Sub icon – a triangular ‘Play’ icon), it will continue running, and you can watch its progress.

You get a display something like this:

Started at: 14:49 Preparing text for search

machu picchu (7:2) 12% 1 m 20 s Finish time: 15:02
storm water (5:75) 18% 1 m 44 s Finish time: 15:00
grey water (4:3) 27% 2 m 23 s Finish time: 14:59
waste water (1:4) 30% 2 m 40 s Finish time: 14:58
west baray (1:1) 39% 3 m 15 s Finish time: 14:58
snow melt (1:1) 41% 3 m 24 s Finish time: 14:58
ground water (2:17) 48% 3 m 59 s Finish time: 14:58
flood plains (1:1) 52% 4 m 16 s Finish time: 14:57
water courses (1:8) 59% 4 m 55 s Finish time: 14:57

Sub WordPairAlyse()

Count IS/IZ spellings
This macro combines the basic ideas of the two IStoIZ and IZtoIS macros in order to count, fairly accurately, the numbers of -is- and -iz- type spellings. It can also, optionally, highlight them. You need to have the IS and IZ exceptions files set up in the same way as for IStoIZ and IZtoIS – for instructions see ‘IZ to IS Spelling and Vice Versa’.

Sub IZIScount()

[bookmark: _Toc526442967][bookmark: _Toc506821311]IZ to IS Spelling and Vice Versa
(See video: https://youtu.be/SXmAJrUCZ_I)

The following two macros allow you either to highlight words that need changing or to actually change them. When you run the macro, it asks which you want to do.

The lists of exceptions need to be held in files (one for each macro) called ‘IS_words’ and ‘IZ_words’. You can set up each macro so that it automatically loads the relevant file from your hard disc, but the macro needs to know where on your disc to find it. You therefore have to put the full filename of the exception file into each macro. To do this, navigate to the folder (directory) where these two files are held:
[image:]

If you click on the down menu arrow to the right of the line showing the string of folder names, the full path name appears:
[image:]

Click Ctrl-C to copy this and add it into the line at the beginning of the macro. Suppose mine is:

C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP

So now the line at the beginning of the macro:

mySFile = "C:\Documents and Settings\Paul\My Documents\IS_words.docx"

has to be changed to (shaded so you can see what I’ve added):

mySFile = "C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP\IS_words"

(or whatever it is on your computer).

The two lists of exceptions are among the IS/IZ macros in the TheMacros file.

If you discover other words that are exceptions, please email them to me so that I can update these as central lists. I have dated the lists so that you can check if you’ve got the latest version. I’ve put a yellow highlight on the proper nouns, because they may look a little funny; the macro requires the words to be in lower case.

N.B. You don’t need words like ‘disabled’ and ‘misapprehension’ in the list (and there are a lot of them!) because the macro ignores ‘isa’ if it’s too near the beginning of the word.

The IStoIZ macro takes account of the fact that, in UK English, analyse, catalyse, paralyse and hydrolyse keep the ‘ys’ form, but not in US English. It senses what the main language of the text is, and acts accordingly.

You can select the highlight colour at the beginning of the macro:

changeColour = wdTurquoise

If you don’t want the is/iz words changing in certain parts of the file (e.g. quotations and/or references lists) you can ‘protect’ the text (a) by using the strikethrough font feature, (this is the same feature as is used with FRedit) and/or (b) by specifying the style names using the line near the beginning of the macro: nonoStyles = "Display Quote,References List", so just include your particular style name(s) in between the quotes.

You don’t have to have the is/iz words both track-changed and highlighted. However, if you do want them both track-changed and highlighted, change the option line to:

bothTCandHighlight = True

The text of ‘IZ_words’ file is hidden in among the macros, pretending to be a macro!

Sub IZwords()

Similarly for the ‘IS_words’ file:

Sub ISwords()

The actual macros are:
Sub IZtoIS()

Sub IStoIZ()

[bookmark: _Toc19270125]Checking for Misspelt Proper Nouns
(Video: https://youtu.be/JOTUvQAu-uo and https://youtu.be/PB0hXA_1tRo)

This macro makes a list of all the proper nouns (well, words with an initial capital) that appear in the text, and shows the frequency with which each occurs. It then goes through them all and uses a whole range of different tests, in order to find pairs (or groups) of words that might possibly be alternative spellings of one another.

So the macro produces some useless information, but if you look through the list, you’ll hopefully be able to pick out a few gems, such as these from one of my earliest uses of this program:

Brosseau . . . 3
Brousseau . . . 2

LeJeune . . . 4
Lejeune . . . 1

Norwich . . . 5
Nowrich . . . 1

Shirioshi . . . 1
Shiroishi . . . 1

I would never have spotted Shiroishi and Shirioshi at opposite ends of a 100,000-word book, and I find that clients and authors are mightily impressed when you notice such things – but they don’t need to know that it wasn’t actually you that picked them up! :-)

If the macro finds, say, Beverley and Beverly then alphabetically those are going to be next to one another in the list but if it finds, say, Barnham and Byrnham then they would be further apart. So I’ve used random colours and different attributes, like underline and strikethrough for the pairs, so that you can more easily spot which word it thinks might be a corruption of which other word.

I’ve also now, in addition to the total list of all the proper nouns, produced a cut-down list, where it’s easier to spot the pairs:

 	AAnAlyse . . . 4	 = F	Comment by Paul Beverley: One pair with this is...

 5 = 	Acronym . . . 3
 5 = 	Acronyms . . . 1

 	Aims . . . 1	= A

 8 = 	Alexander . . . 2	= H
 8 = 	Alexandra . . . 1	= H

 	Also . . . 15	= E
 4 = 	Altand . . . 1

 4 = 	Altland . . . 1
 	Alyse . . . 2	= E

 	Amis . . . 1	= A

 6 = 	Analyse . . . 1	= F	Comment by Paul Beverley: ...right down here, but the highlight colour, and the letter ‘F’ are pointers for you.
 7 = 	Analyses . . . 3

 6 = 	Andrew . . . 8
 6 = 	Andrews . . . 13

@ 	Angquist . . . 1	= D
@ 	Ängquist . . . 1	= D

 	Arial . . . 1	= G
 	Ariel . . . 1	= G

 	Baldo . . . 1	= F	Comment by Paul Beverley: And the pair of this one...

@ 	Barford . . . 1
 	BARFORD . . . 1	Comment by Paul Beverley: Where two words are just the same text but different case, I’ve removed some of the highlighting.

@ 	Belanger . . . 1
@ 	Bélanger . . . 1

 	Black . . . 1	= H
 1 = 	Blah . . . 2

 1 = 	Blau . . . 2
 	Block . . . 1	= H

 	Bold . . . 5	= F	Comment by Paul Beverley: ... is down here.

So if you see a word and can’t see its matching pair immediately on screen, memorise the attributes (e.g. red highlight and bold text) and scroll further down. However, if it’s in the Os, say, you don’t need to go into the Ps because the macro only compares words within each alphabetic section by the initial letter. So, no, it would not find Allsworth and Ullsworth, sorry – the macro is complex enough as it is! (This was probably my most tricky-to-write macro ever.)

Long files – If you have to test a file of more than about 250–300k words, the only thing you have to beware of is Don’t touch the mouse! It sounds silly, but I have discovered that even moving the mouse over the active windows while a macro is running can cause the macro to paste the text that it’s working on into the wrong file! So when I run a long analysis, I move the mouse to the far right, away from the working windows.

N.B. As with many of my macros, if you apply the strikethrough attribute to a section of text, the macro does not include it in this analysis.

Options:

includeAcronyms = True

This means this it will spot, say, an OECD/OCED error. But if your text has a lot of headings in all capitals, these could be quite a distraction, so you could change this to False.

minLengthCheck = 4

The aim of is option should be obvious, but I’ve never had a job full of ‘four-letter words’ that might have been a distraction, but you could increase (or decrease it).

Sub ProperNounAlyse()

[bookmark: _Toc38029136]Highlight UK/US spelling errors
In a text that is set to UK spelling, this macro highlights all the ‘errors’ that are in fact just US spellings, according to Word’s spellchecker, and vice versa. So in a UK English file it will highlight ‘color’ and ‘center’, and in a US English file, it highlights ‘colour’ and ‘centre’.

However, MS Word’s spellchecker thinks that ‘practicing’ and ‘licencing’ are correct UK English spellings, so the macro also highlight those. If you know of any other words that MS Word gets wrong, please let me know and I’ll add them to the macro.

Sub UKUShighlight()

[bookmark: _Toc55977151][bookmark: _Toc74643786]Spellchecking for proofreading and editing
Whether you’re editing or proofreading, the first macro to use is SpellingErrorLister. For proofreading, you can then use SpellingErrorHighlighter to highlight all the spelling errors so that you can check that you haven’t missed any.

If you’re editing, you can use various tools to take the spelling error list and implement the necessary changes in the file(s) of the document you’re working on. The most obvious tool is FRedit, but there are a number of others that could prove useful. These are covered in the ‘Pre-editing Tools’ section of this book.
[bookmark: _Toc55977152][bookmark: _Toc74643787][bookmark: _Hlk67491659]High speed spellchecking
This system is intended for those who want the highest speed of detection and correct (and rechecking) of spelling errors, i.e. it was designed to work with FRedit. But even if you don’t use FRedit, it can still be used to alert you to spelling errors, and also to highlight those spelling errors in your text, if you combine it with SpellingErrorHighlighter. (This limited – but still effective – use will be explained at the end of the section.)

The other macro you will need for best effect is SpellingSuggest.

[bookmark: _Toc74643788]Spellchecking for proofreading
(Video: youtu.be/6F_yT1MIW_Q)
(Video: youtu.be/iESM6OaGBm4)

[An important update to the SpellingErrorLister macro (Oct 2019) is that you can now put a list of ‘spelling errors’ (according to Word), at the end of the document, that are actually ‘OKwords’, as far as this document is concerned:

OKwords
abelian
bijection
cohomological
etc.

(They don’t need to be in alphabetic order.)

As the macro checks the spellings of each word, it also checks in the OKwords list. (note: there’s no space in ‘OKwords’). This is really useful for doing a repeat spellcheck at the end of a job. It also works well with PDFHyphenRemover + PDFHyphenChecker, which automatically generates an OKwords list.]

For proofreading, probably all you want to do is to highlight all the possible spelling errors. Then, after you’ve read the text, you can go back and compare with the highlighted file, to make sure that you haven’t missed any of the spelling errors (a salutary exercise, I find!).

Word’s spelling checker can put a wiggly line under all the ‘spelling errors’, but these are the ones that it thinks are errors. You know that, in your field of work, say ‘cohomological’ and ‘bijection’ are perfectly acceptable, so you don’t want them highlighted; and equally, you don’t want lots of proper nouns highlighted. You can solve this problem by using macros: SpellingErrorLister and SpellingErrorHighlighter.

But before you can use macros to check the spelling, if your text is provided as a PDF file, you will first have to convert it into a Word file. There are many different ways of doing this (as a quick search on the web will reveal) but because it’s just the spelling we’re interested in, it may well be sufficient to simply copy the entire PDF (Ctrl-C) and paste it into a new Word file (Ctrl-V) – or maybe use PasteAsPureText. (And then you might want to use PDFHyphenRemover + PDFHyphenChecker.)

Listing the errors – SpellingErrorLister creates a complete alphabetic list of all the different ‘spelling errors’ (according to Word’s spell-checker) that occur anywhere in a text.

(On a big file, this can take quite a few minutes, maybe 6–12 minutes for a 100,000-word book. The status bar should show you the progress, and if you do want to stop the macro running, you should be able to do so by pressing Ctrl-Break, and then select End, as opposed to Debug. However, Word does sometimes ignore Ctrl-Break on a hard-working macro. But I can almost guarantee that if you click hopefully on the screen, Word will crash! In other words do not click on the screen.)

(If your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP PRESS! I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard – press Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’.)

The list that SpellingErrorLister creates might start something like this (a UK English file):

SpellingErrors

acteylene
adjoint
analyze
analyzed
castilated
cill
clearnd
contractural
crainage
cranage
crosswall
crosswalls
develpments

Clearly, some of these are spelling errors (acteylene, analyze(d) etc), while others might be specialist words (adjoint, cranage) that are perfectly correct. Only you, the intelligent human, know which is which, so your job now is to highlight (in any colour you like – say green) the actual errors, or those that might be an error depending on the context (say light grey):

SpellingErrors

acteylene
adjoint
analyze
analyzed
castilated
cill
clearnd
contractural
crainage
cranage
crosswall
crosswalls
develpments

Highlighting the errors – If you save the spelling errors list by using F12, it will offer the filename ‘SpellingErrors’, so save it with that name and then run SpellingErrorHighlighter, it will look for an open file with the filename ‘SpellingErrors’ and then work its way down the list, highlighting all those words in you file in the same colours that you have used in the list.

In fact, SpellingErrorLister creates the list of ‘errors’ in two parts, the second one starting, for example:

Abrusci
Adlung
Agranovich
Altand
Altland
Ambrosch
Appl
ASI
Athanasopoulos
Azumi
Baldo
Bao
BARFORD
Barford
Bässler

These are probably proper nouns and won’t need highlighting, so listing them separately means that you don’t need to look quite so intently through them, when trying to spot the words that are spelling errors.

N.B. You can use this macro on any Word file, and it will, in fact (a) check and highlight all the text including footnotes and endnotes – but not textboxes – and (b) ignore (i.e. not highlight) any text, such as reference lists, that are struck through, like this.

Highlighting errors in textbox text – If highlighting spelling errors in textboxes is important, then you can (a) first use BoxTextIntoBody to copy the textbox text into the main body of the text, (b) first use MultiFileText – you just give it a ‘list’ of the single file you want to work on, or (c) do the highlighting by using FRedit – simply put ‘| Textboxes = yes’ at the beginning of the FRedit list.

Technical details – Some PDF to Word conversions will give you: B¨assler, Br´edas, It^o etc. The macro will correct these to: Bässler, Brédas, Itô. This conversion is set up at the beginning of the macro, so hopefully if you get any more different ones, you’ll be able to work out how to add them to the list:

myFind = "á,é,ä,ë,ö,ü,ô"
myReplace = "á,é,ä,ë,ö,ü,ô"

The macro is already aware of ligatures: ﬀ, ﬁ, ﬂ, ﬃ, ﬄ, and will change them to separate letters. (That said, later versions of Word – certainly Word 2010 – recognise ‘conﬂict’ as correctly spelt, even though it here uses an ﬂ ligature.)

Sub SpellingErrorLister()

Sub SpellingErrorHighlighter()
[bookmark: _Toc506821308][bookmark: _Toc506821312]Count UK/US spellings
This macro counts how many words there are in UK spelling that are errors in US spelling and vice versa in order to give an indication of which spelling convention has mainly been used and how consistently.

If you want a quicker (less accurate) assessment, you can get it only to check those words that are equal to or longer than a certain number of letters. The example below of minimum word length, counts and timings for a 66,000-word book gives you an indication.

N.B. The macro will not count any words that have the strikethrough attribute applied, so you can ‘blank off’ the references list and any long quotations. (To strikethrough all quotations, you can use the QuotationMarker macro.)

Chars	UK	US	Mins
3	23	52	4.8
4	23	48	4.8
5	18	48	3.6
6	17	47	2.8
7	17	43	2.3
8	17	32	1.9

Sub UKUScount()
[bookmark: _Toc477885828][bookmark: _Toc440463571][bookmark: _Toc322528927][bookmark: _Toc322529213][bookmark: _Toc322532132][bookmark: _Toc323638956][bookmark: _Toc324022074][bookmark: _Toc324232851][bookmark: _Toc324495467][bookmark: _Toc324601091][bookmark: _Toc326501108][bookmark: _Toc326507335][bookmark: _Toc327024889][bookmark: _Toc327374664][bookmark: _Toc329116604][bookmark: _Toc329173011][bookmark: _Toc338164672][bookmark: _Toc342295785][bookmark: _Toc342403443][bookmark: _Toc342484684][bookmark: _Toc342672844][bookmark: _Toc345584555][bookmark: _Toc345584864][bookmark: _Toc346007465][bookmark: _Toc347147431][bookmark: _Toc348886529][bookmark: _Toc348886844][bookmark: _Toc348986749][bookmark: _Toc349132839][bookmark: _Toc350247758][bookmark: _Toc350249570][bookmark: _Toc350434642][bookmark: _Toc354080018][bookmark: _Toc355259970][bookmark: _Toc356752684][bookmark: _Toc357275959][bookmark: _Toc359249473][bookmark: _Toc369984494][bookmark: _Toc371759093][bookmark: _Toc371762032][bookmark: _Toc376522692]Open the Customize Keyboard Dialogue Box
If you customize the keyboard often, here’s a macro to pull up the dialogue box. When you run the macro, it opens the dialogue box with ‘Macros’ selected, if you then click in the RH column, you can select a macro.

Hint 1: You can start the selection of the macro name by quickly typing its first few characters.

Hint 2: If you prefer keyboard to mouse and have assigned this macro to, say, Ctrl-Alt-Shift-K, you don’t need to use the mouse at all. Simply press Ctrl-Alt-Shift-K (or whatever), then press the Tab key; this jumps you straight to the RH column, and you can start typing the macro name.

Sub CustomKeys()

[bookmark: _Toc532109680]Identifying the Next Character
Can you tell what each of these characters is: l|I1°ºo? Difficult, isn’t it?

The differences are more obvious if I increase the font size: l|I1°ºo but in Century Gothic it’s hard: l|I1°ºo

Similarly, can you tell the difference between − and –? If you put them between angle brackets you get a clue:

>−< and >–<

The first one is a proper minus sign, and the second is an en dash. The maths symbols are designed so as to line up horizontally: >−+=<.

The WhatChar macro looks at the character to the right of the cursor and tells you what each character is. So it will tell you for each of l|I1°ºo that they are a lowercase l (el), a vertical bar (vertical bar), an uppercase I (eye) and a number one, then a proper degree symbol, a masculine ordinal (as used in Nº6) and a superscripted ‘o’.

And while I was at it, I decided that it might as well give us more information about the character, so it also tells you if the character is super- or subscripted, and also what font it’s in (but only if it’s in a font other than the font used by Normal style.

[image:]

What’s more, it gives the Unicode number in hexadecimal as well as in decimal. So what?! Well, for example, a Unicode Greek beta (β) is displayed as ‘Unicode: 946 (Hex 3B2)’. This is useful because if you type ‘3B2’ (or ‘3b2’) followed by an Alt-X, it turns into a beta character. (But watch out, because the ‘B’ can look a bit like an ‘8’, depending on the screen font used, and its size on screen.)
[image:]

If you get some of the old Symbol font characters and want to replace them with proper Unicode characters, I know of no way to find and replace them using Word’s F&R. However, you can do so with FRedit. Here’s an example – – and if you use WhatChar, you get:
[image:]

If you now click <ctrl-V> you get:

<&HF062>|

which is the start of a FRedit item. Just add a proper Unicode β:

<&HF062>|β

and when you run FRedit, all those nasty Symbol fonts betas will be changed to Unicode.

(The FRedit library, which comes with FRedit, has several of these set up for you already.)

[bookmark: myTempMark]Now with added voice!
I've added the possibility of using voice so that it speaks the character, and then you don’t need to clear the on-screen prompt window, giving you all the gory details; I find this speeds up the process . However, if you want those details, just select the character and run the macro again.

So to enable voice, you need to change to:

useVoice = True

and you also have to ‘uncomment’ the line at the beginning of the macro:

' Set speech = New SpVoice

i.e. delete the apostrophe.

If you try this and Word complains: “Compile error: User-define type not defined” then you need to enable voice on your copy of Word (available from Word 2010 onwards, I think):

In VBA, click on Tools–References and find “Microsoft Speech Object Library”, tick the box and click OK. On my computer there are two lines saying “Microsoft Speech Object Library”, so make sure you tick the one that says ‘sapi.dll’ at the end, and not the one saying ‘sapi_one’.

Sub WhatChar()

[bookmark: _Toc477885752]Instant Find
As an editor, you want to be able to move around the text looking for things, quickly and easily. For example, you’re reading through the text, and you read:

‘Step 1: Put the cat out’

and you think to yourself, ‘Hang on, did the lists earlier in the text have a colon after the number or not – and were they separated with a space or a tab?’ So, you want to be able to quickly look back – but how far back was it, and will you be able to find it if you rely on scrolling back and scanning by eye?

Using the macros below, there’s a quick and easy way: (You can use whatever keystrokes you like, but for the sake of the explanation, let’s assume you are using my keystroke suggestions.)

Click in the word ‘Step’ and press Ctrl-Shift-Alt-Up to run InstantFindUp. This loads ‘Step’ into the F&R, and jumps up to the previous occurrence. (If you had done Ctrl-Shift-Alt-Down, it would have run InstantFindDown and jumped on to the next occurrence.)

(By default, the macro assumes that you’re looking for the single word at the cursor, so if you want, say, to look for ‘Step 1’, then just select it before running the macro.)

Now that the F&R is loaded, Alt-Left (FindBack) and Alt-Right (FindFwd) will jump you to the previous and the next occurrence of ‘Step’, so you can go up and down each ‘Step’ to your heart’s content.

But then you see that it’s finding ‘step’ as well as ‘Step’. Bother!

No worries! We can soon ‘control’ that. Pressing Ctrl-Alt-Left (and -Right), will jump you through case sensitively, so that it will take you through the occurrences of ‘Step’, but ignore ‘step’. (Word’s own Ctrl-PageUp and Ctrl-Page-Down also jump you from one occurrence to the next.)

(There’s more to come, but just try these and get used to them before memorising more keystrokes.)

I also find it useful to instantly find the selected text by first jumping to the top of the document and then searching downwards for it – that’s InstantFindTop.

Someone asked to do the opposite: first jump to the bottom of the document and then search upwards for it – that’s InstantFindBottom.

Sub InstantFindDown()

Sub InstantFindUp()

Sub InstantFindTop()

Sub InstantFindBottom()

Sub FindFwd()

Sub FindBack()

And I’ve realised that, for DocAlyse, it’s useful to be able to ‘find down’, but with wildcards switched on. This is so that you can select, for example, ‘[a-zA-Z]@, [a-zA-Z]@, and’ in the DocAlyse summary to search through the text for serial commas. So I’ve added another one:

Sub InstantFindDownWild()

Finally, being a totally nutty speed-freak, I decided it would be helpful to be able to jump up and down, from word to (the same) word, but without losing the previous item that I was trying to find. So, say I was looking for the word FRedit, I’d use InstantFindDown, (or Up) and then FindFwd and FindBack; but then FRedit is mentioned a lot in this book (currently about 200 times!). So then if I decided it was near the earlier reference to ‘speed-freak’, I could select that term and use InstantJumpUp to move to it, without losing ‘FRedit’ from the Find function.

Sub InstantJumpUp()

Sub InstantJumpDown()

[bookmark: _Toc477885753]Instant Find – Case Sensitive
The next pair of macros (referred to above) improve on Word’s jumping to the next and previous find. By holding the Ctrl key down – i.e. Ctrl-Alt-Right and Ctrl-Alt-Left (assuming you use the same shortcuts as I do) – it only finds matches that are exactly the same case as the Find text.

Sub FindFwdCase()

Sub FindBackCase()

[bookmark: _Toc31454383]Spellings with varying accents
(Video: https://youtu.be/h0oG3jWM8n8)

(This is, in a way, mis-named: by ‘accent’ I mean any alphabetic character other than the 26 ‘normal’ characters.)

This macro draws your attention to any inconsistencies, where a word containing accents (or any other special characters you’re interested it) is spelt differently in other parts of the document, e.g. facade/façade, cafe/café, déjà vu/deja vu.

Note that it doesn’t list all accented characters (but see the following macro), only those that occur with alternative spellings, i.e. potential inconsistencies.

The macro generates a list like this:

cafe . . . 2
café . . . 6
deja . . . 1
déjà . . . 2
facade . . . 2
façade . . . 4
Lopez . . . 1
López . . . 3
México . . . 1
Mexico . . . 82
Monsivais . . . 3
Monsiváis . . . 1
Zlcalo . . . 1
Zócalo . . . 8

If you want to add any extra ‘funny’ characters, they can be aded to this list at the beginning of the macro:

allAccents = "áÁàÀâÂäÄÃãÅåçÇéÉèÈêÊëËíÍìÌîÎñÑóòÒôÔöÖõÕøØßúÚùÙûÛüÜýÝÿŸğ"

Unfortunately, you can’t just add characters such as ‘ğ’ (unicode 287) into this list (as I’ve done above). Because VBA doesn’t recognise non-ASCII unicode characters, so I’ve now added an option to include a range of ‘Central European’ characters, including the ‘ğ’.

Sub AccentAlyse()

[bookmark: _Toc31454446]Multifile text compilation
(The latest version is demo’ed at: youtu.be/GE47DZ-ZkV0)

(Mac users! Visual Basic on Macs has ‘interesting’ file handling. Mac users say that this macro seems to work OK provided that the filenames are short, say, less than 18 characters, but I can’t guarantee that it will always work properly.)

If you have a book made up of a set of separate files, it might be helpful to have a single file containing the text of the whole book. So that’s what this macro does.

As with my other multifile macros, the macro gets you to identify the folder containing the files by bringing up the Open File window. Navigate to the required folder and click Cancel. The macro then asks whether you want to work on all the Word files in that folder. If you say ‘Yes’, it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP
Chapter_1.docx
Chapter_2.docx
Chapter_3.docx
Prelims.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’) in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through the listed (and not ignored) files, opening each one and creating the compilation.

It opens each of the Word files in the list, copies the text and pastes the text into a single Word file. It doesn’t copy across any of the images or the text of the comments, but it does include the text of the footnotes and endnotes plus any text that appears in textboxes. However, no attempt is made to interleave the notes or the textbox text with the main text; rather, all this extra text is placed at the end of the text in a given file.

It also preserves any italic text in italic, and ditto for bold and superscripted text. This means that you can use the resulting file with DocAlyse, and it will correctly count how many ‘et al.’s are in italic, and also how many ‘funny degree symbols’ there are, i.e. superscripted zeros, O’s or o’s. And having bold text helps you to see where the headings are.

Sub MultiFileText()

[bookmark: _Toc31454450]Text-only version of current document
This is a sort one-off version of MultiFileText, in that it creates a text-only version of the current open document, but it preserves bold, italic, super- and subscript.

Sub CopyTextSimple()

[bookmark: _Toc31454882]Launch your macros from a menu
You can launch your macros from a list on screen, by number or by letter:

[image:]

You can customise the macros on on the menu, by editing the first few lines of the macro:

[bookmark: myTempMark2]myList1 = "d=DocAlyse, h=HyphenAlyse, w=WordPairAlyse"
myList2 = "p=ProperNounAlyse, i=IZISCount, z=IStoIZ, s=IZtoIS"
myList3 = "l=SpellingErrorLister, e=SpellingErrorHighlighter"
myList4 = "u=UKUSCount, f=FRedit"

Feel free to chop and change the list, but be sure to maintain the pattern of punctuation.

Sub MacroMenu()

[bookmark: _Toc441501553][bookmark: _Toc55977438][bookmark: _Toc68355328]Common word/phrase switch
(Main video: youtu.be/NuwIVuJwW1g, Hints & Tips: https://youtu.be/K7xfLbh26oE)
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

(N.B. Please read right through these instructions, because the macro has a huge range of different facilities bundled into it, and I wouldn’t want you to miss its full potential – the video only shows the basic use of the macro.)

MultiSwitch can be thought of as a selective version of FRedit, i.e. you have a list of pairs of words/phrases, where you want the first to be changed to the second, but not globally: it only changes the text at the cursor. Run MultiSwitch once to make one change. Run the macro again, somewhere, to make another change.

As with FRedit, you have to have a list open when you run the macro. If not, it will prompt you to open it.

Here’s an example list (I call it the switch list), but the macro itself contains no data – you are the person who sets what is to be changed into what:

that
which

which
that

like
such as

Like
As with

Due to
Owing to

as a result
because

at this point in time
now

England
the UK

Holland
the Netherlands

continuously
continually

continually
continuously

in conjunction with
with

Since
Because

Therefore
So

dimorphic-tribenzene
dimorfic tri-benzene

dt
dimorfic tri-benzene

precholier
préchôlièr

etc, etc.

You are reading through your text and you decide that a change is needed, so you simply place the cursor somewhere in that word (or in the first word, if it’s a phrase) and run the macro. It looks through your switch list, finds the given word/phrase, and changes it into the alternate word/phrase.

(For me, part of the value of this macro is that, while it is making that change, my concentration remains on the meaning and flow of the sentence. Looked at it the other way round, if I were making the change by hand, while still thinking of the meaning of the sentence, I might well mistype the alternate text.)

The final three items in the above list are spoof entries, just to show that it can be useful for (a) scientific and/or foreign language applications and (b) as an abbreviation expander and (c) applying accents.

The macro also has the facility (should you want it) to offer a group of alternative replacement texts. So, you might have an entry in the list, say:

as a result of
due to
owing to
because of

So, if you click in the text on the ‘as’ of ‘as a result of’, the macro offers you an on-screen menu:

1: due to
2: owing to
3: because of

and you can type in the number of the item you want. (One application of this is where the client wants you to avoid certain ‘stock phrases’, but then again, you don’t want to replace it with the same alternative wording every single time.)

Then suppose you’ve got an item:

last
past
final
previous

If you use this, you will see that the default value that the macro gives you is ‘1’. So running the macro and then just pressing Enter will give you ‘past’. The macro is also set up so that if you double-click on ‘last’ before running the macro, it doesn’t even bother displaying the menu at all but simply uses the first of the alternatives – past.

Formatting: MultiSwitch also allows you to include formatting. (And I typed that sentence by doing an ‘m’, and running MultiSwitch.) The word comes out in italic because my list contains:

m
MultiSwitch

So all I did above was type an m, and ran the macro. If any item of alternate text that has, in the MultiSwitch list, some sort of formatting, then the change will be made to the text, but the formatting will be brought through too.

(Useful hint: in the list, after the italic ‘MultiSwitch’ I’ve put a roman space. This means that after typing ‘m’ and running MultiSwitch, I can carry on typing, and succeeding text will come out in roman, not italic.

Here’s another example.

46
46 Nightingale Drive, NR8 6TR
46 Nightingale Drive^pNorwich NR8 6TR
46 Nightingale Drive,^pNorwich^pNR8 6TR^p

so if I type just ‘46’, and run the macro, I can have any of the three formats:

46 Nightingale Drive, NR8 6TR

46 Nightingale Drive
Norwich NR8 6TR

46 Nightingale Drive
Norwich
NR8 6TR

Option 1 is straightforward. In option 2, you can see that I’ve used ‘^p’ to generate a new line (and you can use ^t for a tab).

In option 3, the postcode is in bold (and a different font). The point is that when the replace item has certain formatting, the macro copies the text out of your list, so the replacement text can have any formatting/styles you like.

For example, you could use it for things like:

[bookmark: _Hlk40957040]H2O
H2O

CO2
CO2

and it would be sensible to have two forms of each, in case you’re typing...

h2o
H2O

co2
CO2

Then you don’t have to do capital-H, capital-O, etc.

Another way to handle a number of alternates for the same word/phrase is to put them in sequence:

so
therefore

therefore
thus

thus
hence

hence
so

so you can cycle through them by, in my case, repeatedly clicking Ctrl-Q.

In jobs where you’re using track changes, there might be some specific changes that you don’t want tracked. So, as with FRedit and others of my macros, if you apply a single strikethrough to the alternate text, the macro knows not to track it.

Fig.
Figure

I used this one, because I didn’t want ‘Fig. 3.2 shows blah...’ at the beginning of a sentence, but I didn’t want to track the change.

Another feature is that if you’ve got things like ‘degrees’, ‘per cent’ etc, the macro can delete the preceding space. So, for example, ‘10 degrees’ needs to become ‘10°’ and not ‘10 °’. You do this by adding an exclamation mark:

degrees
!°

percent
!%

per cent
!%

per annum
!/year

If the macro can’t find an alternate in your list, it beeps at you to indicate that the particular word/phrase is not actually in your list.

General hint: I find it best to keep my alternates list in at least vaguely alphabetic order. That way I can keep track more easily of the different words I’ve got in there. That said, I do tend to add temporasry items – for specific jobs – at the top of the list.

But after you’ve run MultiSwitch, the cursor is left at the point in the list where it found the alternate. This means that it’s easy to make changes to the items in the list while you think about it.

[bookmark: _Toc55981637][bookmark: _Toc55981735]Practicalities – changing the cursor position
If you want to use MultiSwitch for expanding abbreviations, presumably you’ll want to carry on typing after the expansion, so you will want the macro to leave the cursor after the typed-in text. So for abbreviations, can just add a tilde at the end:

usa
United States of America~

You type ‘usa’, press Ctrl-Q and then just keep typing.

However, I have also made it so that if the Find word is only either one or two characters, it automatically makes the assumption that it’s an abbreviation anyway and so it puts the cursor after the replacement text. So I use things like:

au
automatically

b
because

bt
By the way,

and they don’t need tildes.

And going back to the use of the tilde, note that you can put the tilde anywhere in the text, e.g.

pay
Please pay £~ into my account: 76-88-01 567892660.

In this case, if I type ‘pay’, the macro types out this line of text, and the cursor ends up immediately after the pound sign, ready for me to type in the amount.

[bookmark: _Toc55981638][bookmark: _Toc55981736]Practicalities – using the spike
As it stands, for formatted items, the macro uses the spike, rather than ordinary copy and paste. This is so that it doesn’t wipe out what you had carefully copied, ready to paste into the document you’re typing! If you don’t know what the spike is, then you can ignore this.

If you use the spike for other things, and MultiSwitch clashes with it, then you might want to change the line:

 useSpike = True

to

 useSpike = False

There’s also an option:

 includeApostrophe = True

which was set for French users so that you could have items such as:

d’opportunités
d’occasions

d'opportunités
d’occasions

opportunités
occasions

i.e. if includeApostrophe = True, then “d’opportunités” is treated as one word. Otherwise, you would end up with and extra space: “d’ occasions”.

Sub MultiSwitch()

Sub MultiSwitchSetUp()

17

image1.png

image2.png

image3.emf

image4.emf

image5.emf

image6.png

