This is just some extracts from the main book, but it’s less daunting than facing the whole ~350-page document. If you like what you read here, you can take it further by reading the relevant sections in the main book, ComputerTools4Eds, and/or follow a set of steps to load up a basic set of macros, ready to use: Macros by the Tourist Route at: http://www.archivepub.co.uk/documents/Macros_by_the_tourist_route
or http://www.archivepub.co.uk/documents/Macros_by_the_tourist_route_Mac.
Also at the end of this file is a ‘menu’ of some of the available macros, to whet your appetite.
Non-programmers start here

(This video might help: youtu.be/pN8SO6E8dLg)

If you already realise the value of Word macros but you feel nervous about using them because “I’m not a programmer”, let me try to reassure you on a number of issues.

What is a (Word) macro?

It’s a computer program which, in general terms, can ‘do things with words’. As with computer programs generally, macros can be small programs to do very simple jobs, or they can be long complicated ones that do very sophisticated tasks.

Why use macros?

Since ‘doing things with words’ is what an editor does, maybe some of the tasks that we do manually could, to some extent, be automated by using macros. This could

– allow us to complete each job more quickly

– help us to produce a more accurate and consistent end result

– allow us to spend more time doing the interesting things – i.e. engaging with the text – and less time doing the boring repetitive jobs.

Who should use macros?

Generally, macros are of most use to those who do on-screen editing, but anyone who has to edit Word files – for whatever reason – could benefit from using macros.

Proofreaders too can benefit greatly from using some of the macros, as explained in the section ‘My six favourite macros (as a proofreader)’.

But I’m not a programmer!

That’s not a problem. You don’t need to be a programmer. This book offers a huge range of different macros – written specifically for editors – so to get started, you don’t need to learn how to program your own. As you gain confidence, you can start by making changes to my macros – Jack Lyon’s Macro Cookbook (ISBN: 9781434103321) is essential reading for that.

www.barnesandnoble.com/w/macro-cookbook-for-microsoft-word-jack-m-lyon/1107868228
But to use the macros in this book, you only need to learn how to load macros into Word – full instructions are given below. Once the macros are loaded, you just use them.

How do I run a macro?

There are three ways in which a macro can be run:

a.
Open the Macros menu and select it from the list of macros, and click Run.

b.
Add an icon to the toolbars at the top of the Word screen – one icon for each macro.

c.
Use keyboard shortcuts – one for each macro.

 How to set up (b) and (c) is explained below.

What jobs can macros do?

That’s a bit like asking, ‘What jobs can woodworking tools do?’ The answer is that there are many different tools and they do many very different jobs. It takes time and effort to learn how to use the different woodworking tools, and so it is with macros. I just hope that you find it as enjoyable, profitable and satisfying as I do.

But aren’t macros dangerous?

Yes, they are very dangerous! All carpenters know that circular saws and other power tools are extremely dangerous. They have to use the right tool for any particular job, and they have to use it in the right way. If they spoil a piece of wood by using a power tool, it’s not the fault of the power tool! But with experience, you will be able to use macros more and more effectively.

If you misuse macros, you can produce poor quality text, but macros can’t damage your computer in any way.

Also, you should know that the macros cannot attach themselves to your clients’ files. Your clients will not know whether you did the job entirely by hand, or whether you were ‘macro-assisted’.

Introduction to macros

(Videos: My first macro – Part 1 youtu.be/hi4QCQy1QWg and Part 2: youtu.be/KFOVs3qBomY)

What is a macro?

One way to think of it is that it’s an ‘app’, like the ones you use on your phone. So it’s a bit of computer wizardry that ‘does things’. We might say...

A macro is an app.

A macro is a computer program.

A macro is a bit of computer code.

A macro is a computer subroutine.

Unlike with apps, you do have to ‘handle’ the computer code, but if you know how to copy and paste, you’ll be fine.

Macros use a computer language called Visual Basic for Applications (VBA), and just as you might copy and paste some text out of Word into an email (or out of an email into Word), so you need to copy the text of macros into VBA. That’s as complicated as it gets.

The elements of a macro

Here’s a very simple macro – I’ve coloured the important bits.

Sub Swap Characters()
Selection.MoveEnd 1

Selection.Cut

Selection.MoveLeft 1

Selection.Paste
End Sub

I said a macro is a subroutine, right? So the Sub(routine) and End Sub(routine) are the ‘markers’ that show where the macro starts and ends. It’s important, when copying and pasting macros, to maintain this pattern of Sub/End Sub.

The SwapCharacters is the name of the macro. This is important, because that’s how you tell the computer what you want it to do: “Please run the macro called SwapCharacters”.

The name must be unique – the computer gets confused if you paste two macros into VBA that have the same name.

To take advantage of what the macros in this book can do, you need to know where to store them (within the VBA application) and how to run them from within Word.

Storing your macros

Macros can be stored in various places in your computer, but the simplest place is within Word’s Normal template. This is the most convenient place because they then are available for use with any file(s) that you are working on.

(You might hear people saying that it is dangerous to store macros in the Normal template. It is true that there were once problems with doing so, but that was back in the days of Word 97 and 2003. As far as I’m aware, this hasn’t been a problem since Word 2007 onwards.)

The macros are stored inside the Normal template, one after the other, in a Visual Basic file called Normal.NewMacros. Here’s part of my Normal.NewMacros file to show you what the macros look like when viewed in VBA (please don’t worry about the content of these macros, or what they do – just note the way that they are stored):

..

Sub SubscriptSwitch()
‘ F4

Selection.Font.Subscript = Not Selection.Font.Subscript

End Sub
..

Sub SuperscriptSwitch()
‘ F5

Selection.Font.Superscript = Not Selection.Font.Superscript

End Sub
..

Sub Mu()
‘ Version

Selection.TypeText Text:=ChrW(956)

End Sub
..

Sub FontRemove()
‘ Version

On Error GoTo ReportIt

Selection.Font.Reset

Exit Sub

ReportIt:

beep

End Sub
..

There are just three important things to understand here:

•
The macros are all stored together in a single file, but they don’t have to be in any particular order – they are run from Word by name.

•
It’s a single file, so you can select all the macros (Ctrl-A) and copy them (Ctrl-C). You can then paste them somewhere else, perhaps in a Word file, as a way of keeping a backup copy.

•
When adding or removing macros be very careful not to break that repeated pattern of Sub ... End Sub which I’ve again highlighted to make it stand out.

Tip: Below, I explain about how to add a macro, but rather than just reading it in theory, why not choose a particular macro and actually install it. You could try the transpose characters macro that I gave as an example above.

Sub TransposeChars()
 Selection.MoveRight 1, Extend:=wdExtend

 Selection.Cut

 Selection.MoveLeft 1

 Selection.Paste

End Sub

It transposes adjacent characters, say from ‘Pual’ to ‘Paul’ – you just put the cursor between the ‘u’ and the ‘a’ and run the macro.

Adding macros

Macros can be added simply by copying them from this book and pasting them into Normal.NewMacros. So, in this book, make sure that you select the complete macro, from

Sub Something()
to

End Sub

and press Ctrl-C to copy it. Then run VBA (see below), decide where to put the new macro and press Ctrl-V to paste it in. I tend to put new macros down at the bottom of the file, but it really doesn’t matter because Word calls them by name.

(N.B. This book is arranged as two files: this file has the descriptions of the macros, and the other file, ‘TheMacros’, has the actual macro listings.)

The difficult thing is knowing how to open Normal.NewMacros in VBA – it is different on different computer systems!

Installing a macro from scratch

(See also video: My First Macro – Part 1 (6:04): youtu.be/hi4QCQy1QWg)

(See also video: My First Macro – Part 2 (5:45): youtu.be/KFOVs3qBomY)

(See also video: Macro Starter Pack (5:42): youtu.be/IeMnmtJT2Ys)

Macros can be added simply by copying them from an electronic book, from a website or from an email, and pasting them into a program called Visual Basic for Applications (VBA), where they will be stored in the ‘Normal template’, as it’s called. I’ll try to explain in a number of small steps.

Step 1: Copy the macro

Wherever the macro comes from, you first have to select it and then do a Ctrl-C to copy it. (On a Mac, that’s Command-C, ⌘-C.)

However, you do need to make very sure that you select the complete macro, i.e. from the

Sub SomethingOrOther()
down to and including the

End Sub

before you press Ctrl-C (Mac: ⌘-C) to copy it.

Step 2: Open VBA

VBA is a separate application that works alongside Word. The computer programs in VBA are called macros. These macros can be used from within Word without VBA actually being on screen. However, to install your macros in the first place, you have to open VBA, as follows:

Click on Alt-F8 (Option-F8 on a Mac), and it should open the Macros window. (If not, on Word 2003/4 you can use the menu: Tools–Macro–Macros, or on 2007 onwards View–Macros.)

 [image: image1.jpg]Macro name:

bbradd

AbbrSuap
AccentPicker
AcceptFomating
AcceptspeafiTrackChange
AcronymbefinitonLister
Acronymister
AcronymTosmalCaps
addFeys
AddLetierkeys
Additag

Macrosin: | Al active templates and documents.

Descrption:

In the middle of this window is a list of all the macros that are currently installed in your computer. But of course, if no-one has yet put any macros in your computer, the list will have no items in it:

[image: image2.jpg]Al active templates and documents.

Now, in the top box (Macro name:) type the single word Dummy, and click the Create icon (fourth down on the right). VBA will now open, showing:

Sub Dummy()
‘
‘ Dummy Macro
‘
‘
End Sub

Step 3: Paste in your new macro

Select the whole of the Dummy Macro, from the Sub Dummy() line up to and including the End Sub line, and then click Ctrl-V (Mac: ⌘-V). This will put your new macro in place of the Dummy macro.

Step 4: Close VBA

You can usually do this with Alt-Q (⌘-Q), but you can also do it by clicking in the top right ‘X’ (Close) icon – but notice that there’s another ‘X’ just below it, so click in the very top icon.

Step 5: Running your new macro

To run your new macro, use Alt-F8 (Option-F8), to open the Macros window again (or Tools–Macro–Macros or View–Macros). Look in the list of macros for the one you want, click on it and then click Run (top right button).

Once you are familiar with this, there’s a simpler way to add a macro: Press Alt-F8 to open the Macros window, click on any one of the macro names, click on the Edit button, then you can paste in the new macro. However, you must be very careful where you put the new macro! You must be careful not paste the new macro inside one of the existing macros; it must go after and End Sub, and before the next Sub SomethingOrOther. Probably the safest is to use Ctrl-End to go to the very end of the VBA macros, and paste the new macro in there.

Running the macros

There are basically three ways you can run macros:

1.
from the Macros dialogue box

2.
by adding an icon to the toolbar at the top of the Word screen

3.
by pressing a particular key combination.

I use the dialogue box for those macros that I use very rarely, but I never use icons (2). I run 99% of my macros from keystrokes because it’s so much faster than using icons. Once you get more than a small number of icons for macros, it just becomes impractical to use icons.

“But I can’t remember keystrokes!” OK, let me ask you a question: do you have to remember where the gears are in your car? If you do something often enough, it becomes automatic. What’s more, there’s a pattern to the gears, which helps. So I suggest that you make a ‘pattern’ for your keystrokes. Use keys that have some significance to you, and/or use various key combinations with the F-keys, and put a strip of card with the macro names written on it. For very frequently used keystrokes, I suggest that you use a key combination that you can press just with your left hand, and/or keys on the numeric keypad with your right hand – the numeric pad means that it’s less far for you to move your hand away from the mouse.

Tip: Use the CustomKeys macro to call up the Customize Keyboard dialogue box so that it’s quick and easy to change your keystroke allocations. Then the trick is as follows: When you try to use a macro that you don’t often use, press the key combination that you think it might be. Then if that’s not the right one, change the keystroke allocation to that keystroke. The point is that, for you, that is a more intuitive choice of key combination.

Allocating a keystroke (Word 2013 and 2010)

(Video: youtu.be/XXs6z-QhzPw)

1.
Right-click on a blank part of the ribbon and click on ‘Customize the Ribbon’.

2.
Underneath the left-hand column, below the scrollable window, it says ‘Keyboard shortcuts: Customize’ Click the ‘Customize’ button next to it.

3.
In the Customize Keyboard window that appears, in the left-hand list (Categories), find ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).

4.
The right-hand list becomes (not surprisingly) ‘Macros’. Select your chosen macro name.

5.
Click in ‘Press new shortcut key’ and do just that: press the keyboard shortcut that you want to associate with this macro.

6.
To the left of that box is a ‘Current keys’ box. This box shows whether that macro already has a keystroke assigned to it. Also, immediately under that box is a line telling you whether the keystroke you pressed is currently assigned to something else – another macro or a Word command or a special character – or whether it is currently ‘Unassigned’.

7.
If you’re happy that you want this keystroke to be uniquely linked to your selected macro then click the ‘Assign’ button.

Allocating a keystroke (Word 2011 – Mac)

1.
On the Tools menu, click ‘Customize Keyboard’.
2.
In the Customize Keyboard window that appears, in the left-hand list (Categories), find ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).
3.
The right-hand list becomes (not surprisingly) ‘Macros’. Select your chosen macro name.
4.
Click in ‘Press new shortcut key’ and do just that: press the keyboard shortcut that you want to associate with this macro.
5.
Above that box is a ‘Current keys’ box. This box shows whether that macro already has a keystroke assigned to it. Also, immediately under the ‘new keyboard shortcut’ box is a line telling you whether the keystroke you pressed is currently assigned to something else - another macro or a Word command or a special character – or whether it is currently ‘Unassigned’.
6.
If you’re happy that you want this keystroke to be uniquely linked to your selected macro then click the ‘Assign’ button.

Allocating a keystroke (Word 2007)

1.
Click the ‘Customize Quick Access Toolbar’ menu – the little down-arrow at the right-hand end of the Quick Access Toolbar (QAT).

2.
Choose ‘More Commands’.

3.
At ‘Keyboard Shortcuts’ at the bottom of the box, click ‘Customize’.

4.
In the left-hand list (Categories), select ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).

5.
Click in ‘Press new shortcut key’ and do just that: press the keyboard shortcut that you want to associate with this macro.

6.
To the left of that box is a ‘Current keys’ box. This will show whether that macro already has a keystroke assigned to it. Also, immediately under that box is a line telling you whether the keystroke you selected is currently assigned to something else – another macro or a Word command or a special character – or whether it is ‘Unassigned’.

7.
If you’re happy that you want this keystroke to be uniquely linked to your selected macro then click the ‘Assign’ button.

8.
Then ‘Close’, and your keystroke is ready to use.

Allocating a keystroke (Word 2002/3)

1.
Open the ‘Tools–Customize’ tab.

2.
Click ‘Keyboard’.

3.
Then, in the left-hand list (Categories), select ‘Macros’ (pressing ‘m’ on the keyboard, twice, will get you there quickly).

4.
The right-hand list becomes (not surprisingly) ‘Macros’.

5.
Select the macro name.

6.
Click in the ‘Press new shortcut key’ box.

7.
Press the keystroke you want to use.

8.
Just below that box, a line will appear saying ‘Currently assigned to:’ and, hopefully, ‘[unassigned]’.

9.
If it is already assigned to another function within Word, you’ll have to decide if it is a function that you would want to use via a keystroke and, if so, choose a different keystroke.

10.
Click ‘Assign’.

11.
Then ‘Close’, and your keystroke is ready to use.

Tip – using the Customize keyboard dialog

This dialogue box is also useful where

a.
you can’t remember which keystroke you have used for a given macro

b.
you can’t remember the macro name for a keystroke that you already use.

For (b), just click in the ‘Press new shortcut key’ box, press the relevant keystroke and look in the ‘Currently assigned to:’ line.

Adding icons (Word 2007/2010)

1.
Right-click on a blank space on the screen’s toolbar. This brings up the Quick Access Toolbar (QAT)

2.
From the QAT, click the ‘Customize Quick Access Toolbar’ menu.

3.
Choose ‘More Commands’.

4.
(In Word 2010 only, you also now need to click on ‘Customize Ribbon’.)

5.
In the ‘Choose Commands From’ list, select ‘Macros’.

6.
Select ‘Normal.NewMacros.<MacroName>‘ from the list below.

7.
Click ‘Add’.

8.
The macro will appear at the bottom of the QAT list on the right-hand side.

9.
Click ‘Modify’ (under the QAT list).

10.
Choose a symbol for your macro.

11.
In ‘Display Name’, shorten ‘Normal.NewMacros.MyNewMacro’ down to ‘MacroName’.

12.
Click OK.

13.
Use the up/down arrows on the left of the QAT list to move your MacroName symbol to the desired location on the QAT.

14.
Click OK.

Adding icons (Word 2002/3)

1.
Open the ‘Tools–>Customize’ tab.

2.
Select the ‘Commands’ tab.

3.
In the left-hand list (Categories), select ‘Macros’.

4.
In the right-hand list find ‘Normal.NewMacros.<MacroName>‘.

5.
Drag it up to the toolbar.

6.
The cursor will have an ‘x’ in it, but it will turn into a ‘+’ when you are over a bit of the bar where you are permitted to drop it.

If you want to customise the appearance of the macro icon, do the following:

1.
With the ‘Customize’ box open, right-click on your macro.

2.
Click ‘Default Style’.

3.
Right-click again.

4.
Choose either an existing icon from ‘Change Button Image’.

5.
Or create your own button from ‘Edit Button Image’.

Updating macros

If you have a macro that you are already using, and you hear that there’s a more up-to-date version, how do you make the upgrade? The important thing to remember is not to delete the whole of the macro, from

Sub Something()
to

End Sub

If you just delete the old version of the macro, the associated icon and/or keystroke will be lost and you will have to set it up again.

Instead, just delete the ‘meat’ of the macro, leaving the Sub and End Sub lines, for example:

Sub Citehecker()

End Sub

Then copy the ‘meat’ of the new macro, i.e. not the Sub and End Sub lines, and paste it in the space that you have left for it. (Don’t worry about there being extra blank lines – they are totally irrelevant to the working of the macro.)

What happens when things go wrong?

(Video: youtu.be/AY6B-IkLEN8)

First, I’ll give you a general description of what to do to report an error to me, and then I’ll list a few errors that sometimes occur, giving you a suggestion of the possible cause.

A general suggestion

If you get error with some of the macros – especially all the ...Alyse macros – it may be worth creating a text-only version of your file and then running the macro on that copy.

One way is to use:

Ctrl-A, Ctrl-C, create a new file, Paste as Pure Text
but to be sure that you’re getting all the text – including what’s in the foot/endnotes and text boxes – you can use the macro CopyTextSimple. (Better still, especially for large files, use CopyTextVerySimple.)
How to respond to – and report to me – an error

Sometimes, when you try to run a macro, it generates an error, and Visual Basic (VBA) asks you what you want to do, offering you:

End, Debug, Help.

Ironically, the least helpful of these is to click ‘Help’. Don’t bother.

If you just want to give up altogether and ignore the idea of using the macro, click on End.

To find out what went wrong – perhaps so that you can report the error to me – the first thing to do is to make a note of how VBA describes the error. Here’s an example:

Runtime error ‘5174’:

This file could not be found.

MS Word won’t let you copy and paste the error message, but you could perhaps go over to your email software and start to compose me an email, typing in this error message.

Next, click on Debug. Debugging is a technique that programmers use to try to work out what has gone wrong with a program. This will take you into VBA with one of the lines of the macro highlighted in yellow, maybe looking something like this:

If gottaList = False Then

 Documents.Open dirName & listName

Else

 listDoc.Activate

End If

Make a note of the line so that you can report it to me. However, this time, you can do it by selecting a bit of the macro, either side of the yellow line, copying it, and then pasting it into a Word file (or your email), where it will appear as ordinary text. But please tell me exactly which line was actually highlighted in yellow – this is important if you want me to correct the problem.

Next, you have to stop the debugging process, or ‘reset’ VBA. You do this by clicking the Reset button on VBA’s top tool bar. Look for the set of three icons – as on an AV device: Play, Pause and Stop. The ‘Reset’ button is the square block, as used for ‘Stop’ on an AV player.

Send me that information, and I’ll see what I can work out.

(If you don’t stop the debugging process and simply go back into Word, all will seem to be OK. However, when you later try to run another macro, it will generate the error: ‘Can’t execute in break mode’. You then have to click ‘OK’, select the VBA window and click the ‘Reset’ icon, as mentioned above.)

Some possible errors and their possible causes
“Variable not defined” – Search in VBA amongst your macros, and see if there’s a line saying Option Explicit. If so, put an apostrophe in front of it, to disable it. This won’t harm the operation of any of the other macros.

“The Find What text contains a Pattern Match expression which is not valid.” – There are various reasons for this. In general, just report it to me, as above, but if you’re using any of the ...Alyse macros, such as DocAlyse, then it’s likely to be a problem with what’s called the ‘list separator’ used in the operating system of your computer. This is especially likely if you’ve got a computer set up for mainland Europe. Here are my standard instructions:

The ‘list separator’ used within Word needs to be a comma, not a semicolon.

However, this is not a Word option, rather it’s an operating system option.

So, on Windows 7, 8.1 and 10, it is in the Control Panel under ‘Clock Language and Region’ and then ‘Region’ and then ‘Additional settings’ (which is a button near the bottom of the Region window). In Additional settings, the fourth from the bottom is ‘List separator’. Change it to a comma and click OK.

“Compile error: procedure too long” – Let me guess... you’re trying to use DocAlyse, right? And you’re using a Mac? If you get this error, try using the macro, DocAlyseForMac. If even that gives the same error, there is a solution: try DocAlyseForThinMacs and if that fails, there’s finally a DocAlyseForVeryThinMacs. These macros are all in the TheMacros file.
“Compile error: ambiguous name detected: BlahBlah” (where ‘BlahBlah’ is the name of a macro) – This means that, in pasting an extra macro into VBA, you’ve ended up with two copies of the macro BlahBlah. So the solution is to delete one of them. How? You do it in Visual Basic, and you do it very carefully, making sure to delete a whole macro from ‘Sub’ to ‘End Sub’, inclusive.

Note: You can select a whole macro automatically, by double-clicking. However, you need to know where to double click: you do so in the 2 mm-wide white margin, between the actual words of the macro and the light-grey vertical strip that looks like (but isn’t) a vertical scroll bar (which is the vertical bar on the right, as with all application windows).
My twelve favourite macros (as an editor)

(Possibly useful video: youtu.be/MN3ceX3J9rg)

Here’s a list of the twelve Word tools (macros or groups of macros) that save me most time as an editor and enable me to produce a better quality of work. However, all editors work in different ways, so there may be other different macros that you find more useful than these. The aim of this list is just to give you a feel of the sort of macros that are available.

1) FRedit is the biggest timesaver. Unfortunately, it uses a concept that is new to many editors: scripted find and replace. It sounds complicated, but it isn’t. However, within this book I have only provided a brief introduction to the concept, because FRedit has its own set of instructions, plus a library of tools for you to use for a range of different jobs. (www.archivepub.co.uk/documents/FRedit.zip)

2) HyphenAlyse and DocAlyse give me valuable information to help me to prepare my stylesheet for a job. They tell me what conventions the author has used (more or less consistently). This information helps me to decide what conventions to use for punctuation and spelling etc. Because I do this before I start reading, it saves me a lot of time.

3) SpellingErrorLister produces an alphabetic list of all the different words in the document that Word’s spelling checker thinks are spelling errors. You can decide which are or are not spelling errors. You can then use SpellingErrorHighlighter to highlight some of the words for your attention as you edit, or it can change the spelling errors for you automatically.

If I also run ProperNounAlyse, the computer will produce a list of pairs of proper nouns that look as if they might be variant spellings of one another, e.g. Beverly/Beverley.

4) IStoIZ and IZtoIS change and/or highlight all the words in a file that need switching to whichever convention your client wants. (This is only applies to English language documents.)

5) Highlighting macros – There are several macros for applying highlights of different colours, (selectively) removing highlights, and searching for text that is highlighted in different colours.

6) InstantFindDown(Up) – If you want to look at the previous or next occurrence of a word or phrase, InstantFind will take you straight to it – with one single click. The macro also loads this word/phrase into the Find box, so that you can use Word’s own Ctrl-PageUp and Ctrl-PageDown to go through the various occurrences of this text. And the other very powerful find macro (FindSamePlace) is where you want to compare the text in two documents. You select some text in one document, and the macro switches to the other file, goes up to the top of the document and finds the first occurrence of this text.

7) Text editing macros – This refers to macros for various text editing actions, as you actually read the text. For example, one macro will change the next number from numerals into words (and another one changes words to numerals). There are dozens of the text editing macros, so decide which editing actions you use most often, and find a macro for each of them. You’ll find them in the section: ‘Editing: Text Change’.

8) Scripted word switching – MultiSwitch, WordSwitch and CharacterSwitch are three very powerful and, more importantly, flexible ways of editing the text. I won’t bother explaining here; just have a look at the three sections following the heading: ‘Common Word/Phrase Switch’.

9) CitationLister and CitationListChecker – With this pair of macros, I first create a list of all the citations of references that occur in the text, and then the second macro tries to pair up the citations with the references within the list. I can then see if there are any citations that don’t have a corresponding reference in the list, or any references in the list that are not cited in the text. (Often the reference/citation is there, but there’s a spelling error or a mistake in the date etc.)

10) CommentAddMenu and CommentCopier – Select some text, and CommentAdd copies it, creates a new comment for an author query, adds ‘AQ:’ and pastes the text inside quotes, ready for you to type in your query. Or CommentAddMenu does the same sort of thing, but offers you a menu of different standard comments you might want to use (you can obviously edit this menu of comments according to your own style). Then CommentCopier copies all the comments in the file, puts them into a separate file and adds an ‘Answer:’ line in between each query and the next, ready for the author to type in a response. It also creates a ‘Context’ file, a compilation of all paragraphs that contain one or more comments.

11) WhatChar – For example, you come to something that looks like a degree symbol, but you suspect that it might not be. WhatChar checks the ANSI code (a degree is 176), but it also spells out in words what the character actually is. So, for example, it tells you what each of the following, highly confusable, characters (printed here in Century Gothic, to illustrate the problem) are: l|I1°ºvbvb. They are: lowercase letter-L, vertical bar, uppercase letter-I and the number one, then a proper degree symbol, a masculine ordinal (as used in Nº) and a superscripted lowercase letter-O.

12) CountPhrase allows you to select a word or phrase and it tells you how often this occurs in the text. This helps you to maintain consistency because, for example, you can very quickly check if something is spelt in either of two variant ways. But it also does both case-sensitive and case-insensitive counts, so you can see if it is capitalised differently in different parts of the document. (Also, the macro, HyphenSpaceWordCount, counts the number of occurrences of, say, cow-bell, cowbell and cow bell.)

My 10 favourite macros (as a proofreader)

‘But I’m not an editor – I just do proofreading’, you say. Nevertheless, you too can gain both speed and consistency through the use of certain of the macros in this book. Personally, I would never accept a proofreading job without also being given the text in electronic format (most commonly in PDF format).

To gain advantage from macros, you first need to copy and paste the text out of the PDF file(s) and into Word. You can, of course, search for things in PDF files, but once the text is in a Word file, you can use the following macros:

1) HyphenAlyse and DocAlyse give me valuable information to help me to prepare my stylesheet for a job. They tell me what conventions the author has used (more or less consistently). This information helps me to decide what conventions to use for punctuation and spelling etc. Because I do this before I start reading, it saves me a lot of time.

2) SpellingErrorLister produces an alphabetic list of all the different words in the document that Word’s spelling checker thinks are spelling errors. You can decide which are or are not spelling errors. You can then use SpellingErrorHighlighter to highlight some of the words for your attention as you edit, or it can change the spelling errors for you automatically.

If I also run ProperNounAlyse, the computer will produce a list of pairs of proper nouns that look as if they might be variant spellings of one another, e.g. Beverly/Beverley.

Also, I can run WordPairAlyse to spot, say, cow bell/cowbell, which wouldn’t be spotted if the text didn’t also have ‘cow-bell’.

3) IStoIZ and IZtoIS changes and/or highlights all the words in a file that need switching to whichever convention your client wants. (This is only applies to English language documents.)

4) WhatChar – For example, you come to something that looks like a degree symbol, but you suspect that it might not be. WhatChar checks the ANSI code (a degree is 176), but it also spells out in words what the character actually is. So, for example, it tells you what each of the following, highly confusable, characters (printed here in Century Gothic, to illustrate the problem) are: l|I1°ºvbvb. They are: lowercase letter-L, vertical bar, uppercase letter-I and the number one, then a proper degree symbol, a masculine ordinal (as used in Nº) and a superscripted lowercase letter-O.

5) CountPhrase allows you to select a word or phrase and it tells you how often this occurs in the text. This helps you to maintain consistency because, for example, you can very quickly check if something is spelt in either of two variant ways. But it also does both case-sensitive and case-insensitive counts, so you can see if it is capitalised differently in different parts of the document. (Also, the macro, HyphenSpaceWordCount, counts the number of occurrences of, say, cow-bell, cowbell and cow bell.)

6) InstantFindDown(Up) – If you want to look at the previous or next occurrence of a word or phrase, InstantFind will take you straight to it – with one single click. The macro also loads this word/phrase into the Find box, so that you can use Word’s own Ctrl-PageUp and Ctrl-PageDown to go through the various occurrences of this text.

Preparing for a (book) job – proofreading

Here’s what I do as I start a new book job, if I’m proofreading – I’ve recorded it here just as a suggestion as to what I find useful.

	Action
	Result

	Read the brief and/or style guide (if provided) and fill in as much as possible of the stylesheet
	Some items decided on stylesheet (see Appendix 7)

	If the book is in separate files, create an AllWords file using MultiFileText
	All the words (inc. footnotes and text from textboxes), but no images, in one file

	Run DocAlyse
	Stylesheet with more decisions, including some items in the word list, e.g. co(-)operate, learn(t/ed) etc

	If no decision on UK/US English, run UKUScount
	The numbers of UK and US English words, and hence a language decision

	If no decision on is/iz, run IZIScount
	The numbers of -is- and -iz- words used, and hence an is/iz decision

	Run SpellingErrorLister and SpellingErrorHighlighter
	Actual spelling errors highlighted; or a list of spelling errors and corrected words for use with FRedit

	Run HyphenAlyse
	Frequencies of all hyphenated words and of all words with certain prefixes (anti-, non-, post-, pre- etc)

	Run ProperNounAlyse
	A list of possibly misspelt proper nouns, including frequencies

	For academic jobs, run CitationLister and CitationListChecker
	List of referencing problems

Preparing for a (book) job – editing

(See also video: Book editing using macros (13:53): youtu.be/WSfXidPGC1A)

Here’s what I do as I start a new book job, if I’m editing. This is clearly a lot more complicated and detailed. I keep trying to refine this ‘recipe’ each time I edit a job, but it’s far from perfect.

	Action
	Result

	Read the brief and/or style guide (if provided) and fill in as much as possible of the stylesheet
	Some items decided on stylesheet (see Appendix 5)

	If the book is in separate files, create an AllWords file using MultiFileText
	All the words (inc. footnotes and text from textboxes), but no images, in one file

	Run DocAlyse
	Stylesheet with more decisions, including some items in the word list, e.g. co(-)operate, learn(t/ed) etc

	If no decision on UK/US English, run UKUScount
	The numbers of UK and US English words, and hence a language decision

	If no decision on is/iz, run IZIScount
	The numbers of -is- and -iz- words used, and hence an is/iz decision

	Run SpellingErrorLister
	List of apparent spelling errors

	Read through spelling error list and use SpellingSuggest to add alternates, e.g. mesage|message, but colour or highlight words that need checking when I do the actual read through

Copy and paste any ‘suspect items’ in the proper noun section of the error list into a separate document for later use, e.g.

Macmullan

MacMullan
	Spelling errors needing to be changed

Spelling queries to be highlighted

List of a few possible proper noun errors

	Copy spelling error list to the end of the FRedit list and run FReditListProcess once with words in the spelling error list (any case) and once with proper nouns (case sensitive)
	FRedit items for spelling

	Run HyphenAlyse (and also WordPairAlyse)
	Frequencies of all hyphenated words and of all words with certain prefixes (anti-, non-, post-, pre- etc)

	Use HyphenationToFRedit to add items to the FRedit list that will correct hyphenation (and remember to record hyphenation decisions in the Words List at the end of the style sheet)

	FRedit items to correct hyphenation

Updated Words List

	Run ProperNounAlyse
	A list of possibly mis-spelt proper nouns, including frequencies

	Use ProperNounToFRedit to create items for the FRedit list

	Items for the FRedit to correect mis-spelt proper nouns

	Check through proper noun list and try to resolve any conflicts with names of different spelling, using InstantFindUp or FindSamePlace to jump around and look at the context, and/or GoogleFetch to check names on the internet
	Items added to FRedit list to correct (or highlight, if not sure) proper noun errors

	If not sure on some names, query with author and get them correct, and only then...
	More items for FRedit list

	For academic jobs, run CitationLister and CitationListChecker to check the references and...
	List of referencing issues to check via the internet or query with the author

	...use AuthorDateFormatter to sort formatting of names, initials and dates
	Improved formatting of references list

What can macros do for you?

There are very many different things that macros can do, so I have divided them up into sections to try to make it easier for you to find the macro(s) that you want for any given job.

Textual analysis – preparing your stylesheet

There are only a few macros under this heading, but they are some of the most powerful, for both proofreaders and editors. Their purpose is to help you to assess the script before starting work on it. The aim is to help you make decisions about spelling, hyphenation, punctuation styles etc before you start to read. This can save you a lot of time. (Editors may like to run some of these macros again on the finished files to pick up any remaining inconsistencies.)

Pre-editing tools

If you are editing a text, there can be a lot of changes to be made to the file before you actually start reading, and many of these involve repetitive tasks – just the sort of thing that computers are good at. The most powerful tool here, FRedit, provides ‘scripted find and replace’, a concept that is new to some editors, for which there’s only a brief introduction in this book. FRedit has its own, separate documentation. This macro can be very useful even if is used very simply, but it can also do some extremely time-saving tasks if you are willing to learn to use its more powerful aspects. The FRedit package comes with a library of tools that other people have developed. This is especially helpful because many of these special tools use wildcard find and replace.

Other macros in this section do various editing jobs on: tables, frames, textboxes, footnotes and endnotes, bookmarks, comments and styles. For example, there are macros that pull all the tables and/or figures out into a separate file, and a macro that creates a list of all the acronyms in a file etc, etc.

Editing: text change

As you are reading through the text, you do lots of minor editing actions: adding a comma, hyphenating two words, switching the order of two words, changing numerals 1–9 (or 10) into words etc. Using these macros can speed up the editing process but, more importantly, they enable you to make those minor changes without taking your attention off the meaning of the text that you are reading.

Editing: information

These macros provide useful bits of information about the piece of text you are working on.

Editing: highlighting

Coloured highlighting can provide another set of tools to aid the editor: you (or a macro) can use different colours to highlight different things. These macros allow you to add highlights of whatever colour, and then to move around the text, looking at the text in the different colours. Also, you can get rid of the highlighting, either in a given area of text, or selectively by colour; you can remove, say, all the green highlighting while leaving all the rest of the highlighting intact.

Editing: navigation

When working with text, you want to be able to move around the text, quickly and easily, looking at various bits, checking them and changing them. So, by using macros, you can jump instantly to, say, another heading of the same type, to another occurrence of the selected text, to another comment, to the same place in a different file – plus a whole load of other ways of jumping around the text.

Editing: comment handling

Word’s comment facility can be useful for making notes for yourself or others, and macros can help with adding comments. It can also collate the comments afterwards to pass on to the author or the typesetter or the client – especially useful if it’s a multifile job.

Other tools

This final section is just a miscellany of macros – ones that didn’t fit into any other category.

If you like what you have read here, you can take it further by reading the relevant sections in the main book, ComputerTools4Eds, and/or follow a set of steps to load up a basic set of macros, ready to use: Macros by the Tourist Route at: http://www.archivepub.co.uk/documents/Macros_by_the_tourist_route
or http://www.archivepub.co.uk/documents/Macros_by_the_tourist_route_Mac.
Also, is that ‘menu’ I promised you of some of the available macros, to whet your appetite:
1. Bookmarks

DeleteAllBookmarks – Deletes all bookmarks

BookmarkTempAdd – Adds temporary marker

BookmarkTempClear – Deletes temporary markers

BookmarkToCursorSelect – Selects from temporary marker to cursor

BookmarkTempFind – Jumps to temporary marker

2. Comments

CommentAdd – Adds a comment

CommentAddMenu – Adds a comment off a menu

CommentAdder – Adds a comment off a menu

CommentPicker – (similar but for PDFs) Copies a comment out of a list of comments

CommentPickerInserter – (ditto) Copies a comment from a list and paste into text

CommentCopier – Creates an author query list, with space for author’s reply, plus a file of each comment’s context

CommentCollectTabulated – Collects all comments into a table

CommentListNumbered – Lists all comments in file with index numbers

CommentNumbering – Adds or removes comment initials and numbers, e.g. [PB1]

AddCommentMarkersInText – Adds comment initials and numbers to text

CommentInitialFandR – Finds and replaces comment initials

CommentInitialReplaceAll – Changes all comment initials

CommentContextCopier – Copies all paragraphs containing comments into a new file

MultiFileComment – Lists all comments in a set of files

CommentNext – Jumps to next comment

CommentPrevious – Jumps to previous comment

CommentsPane – Opens the comments pane

CommentJumpInOut – Jumps into and out of comment text

CommentChangeScope – Reduces or extends the scope of a comment
CommentTextNormalise – Gets rid of ‘funny effects’ in the comment boxes

DeleteComments – Deletes all comments

CommentBracketsToBubbles – Copies text in square brackets and into comment bubbles

CommentBubblesToBrackets – Copies comments into brackets in running text

CommentsAddIndexOnInitials – Adds serial number to initials in all comments

CommentsDeleteAllNotTagged – Deletes all comments NOT starting with a specific tag

CommentsDeleteSelectively – Deletes all comments that DO have a specific tag

3. Document analysis

MegAlyse – Launches a selected series of analysis macros

UKUSCount – Has the author predominantly used UK or US spelling?

UKUShighlight – Marks US spellings within UK text and vice versa

IZISCount – For UK spelling, has the author predominantly used -is- or -iz- spellings?

(For editing, you can use IStoIZ and IZtoIS to implement your decision.)

ProperNounAlyse – Alerts you to possible proper noun misspellings, showing their frequency

(For editing, ProperNounToFRedit can be useful.)
FullNameAlyse – Creates a frequency list of all full names, e.g. Joe Bloggs, K Smith, Paul Edward Beverley

SpecialWordSpellAlyse – Does a ProperNounAlyse of all long ‘spelling error’ words

HyphenAlyse – Shows the frequency of word pairs in hyphenated, two-word and single-word form

(For editing, HyphenationToFRedit can be useful.)

HyphenationToStylesheet – Takes items from the HyphenAlyse list, ready for the word list of a stylesheet

WordPairAlyse – Shows the frequency of word pairs that are never hyphenated (e.g. can not/cannot)

CapitAlyse – Analyses words with initial capitals (or not)

AccentAlyse – Compares words that consist of the same letters, but with different accents

AccentedWordCollector – Collects all the accented words in a text

AAnAlyse – Highlights a/an errors: a onion, an pear, an union, a hour, a HTML, an UFO, a O, an P, a H, an U

DocAlyse – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), Fig(ure), Eq(n) etc

CenturyAlyse – Analyses how centuries are formatted in a document
ListAlyse – Makes a list of all the ‘list’ items – then you can analyse them!
FormatAlyse – Highlights various formatting features to make you aware what’s been used

StyleEffectDetector – Reports the style and effects applied to the text

CatchPhrase – Searches for and counts repeated phrases

DuplicateSentenceCount – Counts frequency of any duplicated sentences

WordGraph – Gives a visual indication of the occurrences of a word or phrase

PunctuationFormatChecker – Variously highlights italic/roman punctuation

HighlightOddPunctuationFormat – Highlights oddly formatted punctuation marks

RomanPunctuationHighlight – Finds roman punctuation that follows italic text

WhatChar – Shows ASCII and Unicode numbers and names of character at the cursor

Chirimbolos – WhatChar in SPANISH by Marcela Ronaina

SerialCommaHighlight – Highlights or underline text that appears to have a serial comma

SerialNotCommaHighlight – Highlights or underlines text that appears not to have a serial comma

SerialCommaCounter – Counts serial (or not) commas in lists

SpecialSortsLister – Creates a list of all the special sorts in a file

SpecialCharList – Creates a list of the Unicode characters in the document

TextProbe – Finds funny character codes

FieldAlyse – Counts all fields of different types

SentenceAlyse – Analyses the size of sentences

ItalicWordList – Creates a list of all words in italic

ListofHeadings – Creates a list of all headings

ListAllHeadings – Creates a list of all headings by style name

StyleDetector – Displays or speaks the current style name

FontColourReader – Reads style font colour + any applied colour
PhraseCount – Counts a series of selected phrases

CountPhrase – Counts the word or phrase selected
WordSectionCounter – Counts words in sections of text between headings

HyphenSpaceWordCount – Counts hyphenated word forms

CountAll – Count text inc footnotes, endnotes and textboxes

ItalicCount – Counts the number of words that are in italic

MultiFileCount – Counts words in a group of files

WordTotaller – Adds up word numbers in selected texts

HighlightLongQuotesDouble – Highlights all extra-long quotes (double)

HighlightLongQuotesSingle – Highlights all extra-long quotes (single)

HighlightIndentedParas – Highlights all indented paragraphs

HighlightAllQuestions – Highlights all sentences ending with a question mark

LongSentenceHighlighter – Highlights all sentences more than a certain length

LongParagraphHighlighter – Highlights all paragraphs more than a certain length

LongSentenceCheck – Colours long sentences

SentenceLengthDistribution – Creates a histogram of sentence length

HighlightDuplicateSentences – Highlights pairs of identical sentences within a document

DuplicatedWordsHighlight – Adds a highlight to any duplicate words in a text, e.g. ‘the the’
DuplicatedWordsFind – Jumps to the next duplicated word pair: ‘the the’ and ‘and and’ etc

FindRepeatedWords – Finds words that are repeated in a given range

RepeatedWordsInSentences – Highlights any words duplicated within given sentences

TooDifficultWordHighlighter – Highlights any words not included in a given word list

ChronologyChecker – Copies paragraphs containing date references into a new file

4. Fields

URLlink – Makes the URL/email at the cursor a clickable link

URLlinker – Finds URLs in the text and links them

URLunlinker – Unlinks all the URLs in the selection or the whole file

EmailLinker – Finds email addresses in the text and links them

URLshrinker – Reduces the extent of a URL link to just the selected text

UnlinkCitationsAndRefs – Unlinks reference citations (ignoring equations)

DeleteAllLinks – Deletes all hyperlinks

DeleteSomeLinks – Deletes hyperlinks that are not URLs

ReferenceCheckWeb – Checks whether each of the URLs in the text appears in the references list

MendeleyPunctuationCorrection – Moves punctuation marks to before the note indicator

FieldsUnlink – Unlinks all fields except equations

5. Figures and tables

FigCallouts – Figures call-out inserter

FigStrip – Strips out all figures and leave a callout

DeleteAllFigures – Deletes all images that seem to have a figure caption

DeleteAllInlineImages – Deletes absolutely all images

DeleteAllImagesAndCloseUp – Deletes all images and closes the gaps

DeleteAllImagesAddCallout – Deletes all figures and leaves a callout for each

TableCallouts – Inserts table callout

TableEdit – Edits items in the cells of some or all tables

TableEmDasher – Changes empty cells and cells with hyphen/en dash to an em dash

TableStripper – Strips out all tables into a separate file

TablesToTabText – Converts all tables into tab-separated text

CellsAddChar – Checks that there is a full point ending each cell

TableCellsInitialCaps – Applies an initial capital to every cell in the selected range

TableBordersToggle – Switches table borders and rules on and off

6. File handling

MultiFileCopier – Saves a folder full of files into a new folder, adding ‘_PB_01’ to each name

SaveAsWithIndex – Saves the current file, adding a suffix

OpenMySize – Opens the window to a particular size, position and magnification

MultiFileFRedit – Multifile version of FRedit
MultiFilePDF – Saves a folder full of files as PDFs

MultiFileText – Collects text plus simple formatting from multiple files

MultiFileWord – Concatenates multiple files (i.e. including formatting and images)

MultiFileReferenceCollator – Collects all references (or foot/endnotes) from multiple files

MultiFileShowHiddenText – Unhides hidden text in multiple files

MultiFileCount – Counts words in a group of files

CopyTextSimple – Creates a text-only copy, with some features preserved

CopyTextVerySimple – Creates a text-only copy, with no features preserved

ChapterChopper – Chops text into chapters

ChapterMarker – For use with ChapterChopper
FileChopper – Chops text into a number of smaller file using page breaks

FileLister – Lists all files in a folder

LinesToParagraphs – Converts lots of individual lines of text into paragraphs

TheBook – Loads two named files, and opens them on screen at a given size and zoom

LoadTheseFiles – Loads all the files listed in a file list

7. Formatting

StrikeSingle – Toggles strikethrough attribute on and off

StrikeAndColour – Adds strikethrough and font colour to selected text

EquationsStrikeThroughAll – Applies strikethrough to all equations in the text

CodeSegmentProtect – Applies strikethrough to computer code sections

EquationsHighlightAll – Highlights all maths items

SpaceEquationsInPara – Adds spaces to MathType equation in this para if necessary

EquationSpacer – Adds spaces either side of equations that butt up to some text

EquationsConvertAll – Converts all Equation Editor items to their text equivalent

QuotationMarker – Applies strikethrough to all quotes and displayed text to protect them

FontEliminate – Restores anything in one specific font to the default font

FunnyFontFind – Finds the next paragraph that has mixed fonts

FunnyFontClear – Makes all text in the selection the same font

FontHighlight – Highlights all fonts not named in the list

FontLister – Lists all font names in selected text or whole file

FontFind – Finds text in a given font name in selected text or whole file

FontFunniesClearThisOne – Makes the selected text into the default font

FontFunniesClearAll – Changes all text in this specific font into the default font

HighlightNotThisSize – Highlights all text NOT the same size as the current text

StyleCopy – Copies style

StylePaste – Pastes style

PasteWithEmphasis – Pastes with emphasis

PasteUnformatted – Pastes unformatted

ClipToText – Gets pure text from PDFs and websites

UnifyFormatBackwards – Makes start of paragraph (or selection) same format as the end

UnifyFormatForwards – Makes end of paragraph (or selection) same format as the start

JustifyOFF – Turns this format off on all paragraphs

FirstNotIndent – Removes first line on all paragraphs that follow a heading

DoubleSpaceAfterSentence – Ensures that every sentence has two spaces after it

FormatRemoveNotURLs – Removes all styles and formatting except URLs

Boldiser – Toggles next character or selected text bold

Italiciser – Toggles next character or selected text italic

ItaliciseVariable – Runs along the line to find alpha characters and italicises them all

ItaliciseOneVariable – Runs along to find the next single alpha char and italicises (or italicises a selection)

ItalicisePhrase – Selects text up to next punctuation mark and makes it italic

Romanise – Removes italic from the next set of italic characters

PunctuationItalicOff – Un-italicises all commas, etc. not followed by italic text

PunctuationBoldOff – Un-bolds all commas, etc. not followed by bold text

UnderlineOnlyItalic – Removes all underlining, then underlines all italic text

UnderlineStyle – Changes the underline style of underlined text

BoldFirstOccurrence – Emboldens the first occurrence of words in a list

ListItemNumberFormatter – Formats the numbering of the current list item

DisplayedTextFormat – Removes quotes and romanises and trims trailing spaces

ParagraphEndChecker – Highlights the end of all possibly punctuation-less paragraphs

ShowFormatting – Displays all formatting or just paragraph marks

ShowFormattingMenu – Displays (or not) various formatting markers, and the highlighting

BordersAddToText – Changes underlined+highlighted text to coloured borders

BordersAllOff – Removes border attributes from some or all text

ParaSplitJoin – Splits the para after current word or joins to next para

FormatNumbers – Formats number at cursor or numbers within a selection
RemoveNumbersFromHeadings – Removes automatic numbering from headings

SupercriptNumberFormatter – Corrects spaces + punctuation on superscripted numbers

8. Global changes

FRedit – Does scripted global find and replace

FReditSelect – Run FRedit, but only on multiply selected text

FReditListRun – Loads, runs and closes a specific FRedit list

FReditListMenu – Provides a menu to run different FRedit lists

FReditCopy – Copies word to make FRedit list item

FReditCopyPlus – Copies word to make FRedit list item and highlight and case insensitive

FReditCopyWholeWord – Creates FRedit item for whole-word F&R

FReditListProcess – Tidies up a FRedit list from cursor downwards

FReditSame – Creates FRedit item with ^& (i.e. replace with itself, ready for format/highlight change)

FReditSwap – Swaps the two sides of a FRedit item

FReditSimple – Performs a list of F&Rs (a FRedit trainer)

MiniFRedit – Adds attributes to certain words

FReditListChecker – Checks for possible anomalies in a FRedit list

HyphenationToFRedit – Takes items from the HyphenAlyse list, ready for the FRedit list

ProperNounToFRedit – Picks up alternative spellings in a PN query list for a FRedit list

FReditListCreate – Adds text to list items and applies formatting

SpellingSuggest – Creates a FRedit list item using Word’s alternate spelling

QuotationMarker – Applies strikethrough to all quotes and displayed text to protect them

TaggedTextToSmallCaps – Finds tagged text, lowercases it and changes to small caps

AcronymsToSmallCaps – Finds all acronyms (in text or selection) and changes to small caps

UnitSpacer – Finds all numbers with a unit and adds a thin space

SuperSubConvert – Changes weird super/subscript format to proper ones

SymbolToUnicode – Converts Symbol font characters to Unicode characters

TagsShowHide – Changes tags into hidden text and then reveals them again

MatchSingleQuotes – Checks whether single quotes match up

MatchBrackets – Checks whether brackets match up

MatchDoubleQuotes – Checks whether double quotes match up

QuoteMarkEmbedder – Changes double quotes inside double quotes to singles

EnclosureFixer – Checks and corrects the order of enclosures – brackets, braces and parentheses

ChapterChopper – Chops text into chapters

ChapterMarker – For use with ChapterChopper
FileChopper – Chops text into a number of smaller file using page breaks

MultiChoiceTidierGlobal – Lowercases first word and remove end spaces and punctuation

MultiChoiceTidierSingle – Lowercases initial character of answer and remove end spaces and punctuation

FReditListRun – Loads, runs and closes a specific FRedit list

FReditListMenu – Provides a menu to run different FRedit lists

HeadingStyler – Styles all headings by depth of section number

BodyTexter – Applies ‘Body Text’ to every paragraph in ‘Normal’
StyleBodyIndent – Adds body style generally, plus ‘No indent’ after headings
FormatHeadwords – Adds a character style to the first word of every para in a given style
IndentChanger – Changes paras of one indent value to another

FirstLineIndentToTab – Changes all first-line indents to a tab
TableStripper – Strips out all tables into a separate file

BoxTextIntoBody – Copies text out of textboxes, then delete the boxes

ComboBoxAccept – Finds combo boxes and replaces them with the currently selected text

MultiFileAcceptTrackChanges – Accepts track changes in multiple files

ItalicParaDelete – Deletes all paragraphs that are mainly in italic

HighlightWithTrackChange – Use allcaps, smallcaps, underline for tracking highlighting

CapitaliseUndoubler – Finds doubled capital letters and corrects them

9. Text cleaning after conversion from PDF or OCR

PDFsoftHyphenRemove – Unhyphenates split words

PDFhardHyphenRestore – Hyphenates falsely concatenated words

PDFHyphenRemover – Finds all end-of-line hyphens, joining back to the next word

PDFHyphenChecker – Checks the line-end hyphenation of a converted PDF

PDFunderlineToLigature – Restores underline characters into ligatures

PDFfunniesToLigatures – Restores ligatures that have been converted to odd characters

LigatureConverter – Replaces funny codes for fi/ff/fl/ffi in converted PDF

PDFspellAll – Underlines all ‘spelling errors’
DFspellIgnoreProperNouns – Underline all spelling errors except proper nouns

10. Highlighting (and colouring)

HighlightMinus – Removes or add highlight in a choice of colours

HighlightPlus – Adds highlight in a choice of colours

ColourMinus – Removes or add font colour in a choice of colours

ColourPlus – Adds font colour in a choice of colours

ColourToggle – Turns red text on/off

Un – Removes highlight and font colour of this colour

UnHighlightAndColour – Removes all highlight/colouration of the current colour

HighlightAllOff – Removes all highlighting, including in boxes

unHighlightExcept – Removes all highlights except one/two chosen colours

SelectiveUnColourUnHighlight – Removes highlighting + colouration, but only on non-program text

ClearHighlightAndColor – Removes all highlighting, colouration and underlining

HiLightON – Adds highlight in currently selected colour

HiLightTurquoise – Adds highlight in turquoise

HiLightOFF – Removes highlight (text colour) from selected text

HiLightOffALL – Removes ALL highlights (text colour) from whole text

HiLightOffCurrentLine – Removes highlight (text colour) from selected text or current line

HighlightSame – Highlights all occurrences of this text in this colour

HighlightOffWord – Removes highlight from all occurrences of this word

HighlightFindDown – Selects the next piece of highlighted text

HighlightFindUp – Selects the previous piece of highlighted text

SelectNextHighlight – Selects the next piece of highlighted text

SelectPreviousHighlight – Selects the previous piece of higlighted text
FindColouredText – Finds coloured text

FindColouredTextUp – Finds coloured text

HighlightLister – Lists all the highlight colours used

HighlightListerDeLuxe – Lists all the highlight colours used and which are not used

HighlightWordList – Highlights (and/or colours) all the words/phrases in a list

HighlightCertainCharacters – Highlights certain characters with attributes

HighlightNonRomanPunctuation – Highlights non-roman punctuation

RevisionHighlight – Highlights all the edits in a text
CountWordsInHighlightColour – Counts the number of words in a given highlight colour or all highlighted words

CopyHighlightedText – Copies all paragraphs containing some highlighted/coloured text into a new file

WordSectionCounter – Counts words in sections of text between headings

HighlightWithTrackChange – Use allcaps, smallcaps, underline for tracking highlighting

HideShowText – Makes body text invisible (therefore emphasises other elements, e.g. text boxes)

BordersAddToText – Changes underlined+highlighted text to coloured borders

BordersAllOff – Removes border attributes from some or all text

Confusables – Highlights/colours list of words in confusables file

11. Internet

URLlauncher – Launches successive URLs from the text

DictionaryFetch – Launches selected text to dictionary.com

GoogleFetch – Launches selected text to Google

GoogleFetchQuotes – Launches selected text – with quotes – to Google

GoogleTranslate – Launches selected text to Google Translate

GoogleMapFetch – Launches selected text to Google Maps

MerriamFetch – Launches selected text to Merriam-Webster

MerriamFetch2 – Launches selected text to Merriam-Webster unabridged

MerriamLegalFetch – Launches selected text to Merriam-Webster legal website

LawDictionaryFetch – Launches selected text to Dictionary.Law website
OneLookFetch – Launches selected text to OneLook
BLcatalogueFetch – Launches selected text to the British Library catalogue
OUPFetch – Launches selected text to OUP

MacquarieFetch – Launches selected text to the Macquarie dictionary

PubMedFetch – Launches selected text to PubMed

ThesaurusFetch – Launches selected text to thesaurus.com

WikiFetch – Launches selected text to Wikipedia

12. Language

UKUShighlight – Marks US spellings within UK text and vice versa

LanguageHighlight – Highlights all text not in main language

LanguageSetUS, LanguageSetUK – Sets language for whole document

13. Lists

SortIt – Sorts the selected text

DuplicatesRemove – Removes duplicate items from a list

SortNumberedList – Sorts numbered list, ignoring the number at the beginning

SurnameSorter – Sorts a name list on surname, but allowing for postfixes

BibSortWithDittos – Sorts bibliographic list including ditto marks
CitationListSortByYear – Sorts items in a citation list in the text by date

SortListInText – Sorts items in a list in the text alphabetically

SortAndRemoveDups – Sorts the selected text and removes duplicate items

SortCaseSense – Sorts into separate lists: Lcase/Ucase

SortTextBlocks – Alpha sorts blocks of text by first line

ReverseList – Reverses the order of items in a list (just the actual order, not alphabetically)

ListBulleter – Adds a bullet to every paragraph in a list

TagBulletLists – Adds tags to all bullet lists

ListItemNumberFormatter – Format the numbering of the current list item

AutoListLcaseAll – Lowercases initial letter of all auto-bulleted/numbered list items

AutoListLcaseOne – Lowercases initial letter of one auto-bulleted/numbered list item

VerseListFormat – Formats list(s) or poem verse(s) with manual linebreaks

ContentsListChecker – Confirms the page numbers in the contents list

ContentsListerByNumber – Creates a contents list from numbered headings

ContentsListerByStyle – Creates a contents list from numbered heading style

ContentsListerByTag – Creates a contents list from tags, <A>, etc

AcronymLister – Lists all acronyms

AcronymFinder – Finds a group of words that might match an acronym

AcronymDefinitionLister – Creates a list of acronyms with definitions

ListAllColouredWords – Creates an alphabetic list of all words in the selected font colour

ListHighlightedText – Lists alphabetically any text that is highlighted

ListAllLinks – Creates a list of all the URLs in a file, both the visible text and the underlying URL

ListSemicolon – Adds semicolons to bulleted list

SemicolonEndPara – Lowercases first character and add semicolon at end

ListLowercaseNoPunct – Lowercases initial character and removes end punctuation

ListUppercaseNoPunct – Uppercases the initial character and removes end punctuation

ListLowercaseSemicolon – Adds semicolons to bulleted list and lowercases initial character

FullPointOnBullets – Finds bullet items and ensures they have a full point

IndexElide – Adds elision to an index

ListHighlighter – Highlights all ‘short’ paragraphs in a text in order to locate lists

ParaWordLengthHighlighter– Highlights all paragraphs of a range of word lengths

KeystrokeLister – Creates a tabulated list of custom key allocations

KeystrokesMacroSave – Creates a list of all macro keystrokes

KeystrokesMacroRestore – Applies keystrokes from a list of macros and keystrokes

KeystrokesSaveAll – Creates a list of all user-defined keystrokes

KeystrokesRestoreAll – Creates keybindings from a list

MacroVersionChecker – Checks version dates of all your macros against MacroList

MacroUpdater – Updates to the current macro text, preserving the keystroke

ListOfTextParas – Lists all paragraphs (pure text) starting with certain text

ListOfParas – Lists all paragraphs (formatted text) starting with certain text

ListHighlightedOrColoured – Lists (alphabetically) text with font colour or highlight

ListOfList – Lists all items in a list that contain a particular text

CopyToList – Copies selected text into a list file

AddWordToStyleList – Adds the selected text to the style list file (similar but with formatting)

AlphaHeadersOnIndex – Adds alpha headers to an index

FontColourDocumentSplit – Splits a document into coloured and not coloured

14. Notes

NotesEmbed – Embeds footnotes or endnotes

NotesUnembed – Unembeds footnotes or endnotes

NotesUnembedBySections – Unembeds endnotes that are numbered in sections

RenumberNotes – Renumbers all note numbers
NotesInlineToEmbed – Copies square bracketted notes into embedded notes

NotesCopyToInline – Copies notes into inline notes in square brackets

RenumberSuperscript – Renumbers all superscript numbers

ListRenumber – Makes all following numbered items in a list consecutive

NoteJumper – Jumps back and forth between notes and main text

FootnoteNext – Jumps to next footnote

FootnoteNextUp – Jumps to previous footnote

FootnoteFiddle – Makes changes to all footnotes

FootnoteNumberNotItalic – Makes changes to all footnotes

NoteDeleteDblSpace – Deletes double spaces from endnotes

EndNoteFiddleSuperscript – Makes changes to superscript on all endnotes

FootnoteFiddleStartSpace – Removes initial space from each footnote

DeleteAllFootnotes – Deletes all footnotes

DeleteAllEndnotes – Deletes all endnotes

FootnoteAdd – Creates a new footnote (in a given style and/or sq. brackets)

EndnoteAdd – Creates a new endnote (in a given style and/or sq. brackets)

SupercriptNumberFormatter – Corrects spaces + punctuation on superscripted numbers

15. Numbering and lettering

NumberDecrement – Subtracts one from the following number (or subtracts a specific number)

NumberIncrement – Adds one to the following number (or adds a specific number)

LetterDecrement – Picks up the current character and replaces with the alphabetically previous character

LetterIncrement – Picks up the current character and replaces with the alphabetically next character

NumberToFigure – Converts the next number, looking through the text, to a figure

NumberToText – Converts next number into text

NumberToTextMultiSwitch – Finds a number, then calls MultiSwitch to change it

TextToNumber – Finds numbers expressed in words + converts to figures

FigTableBoxLister – Finds figure/table/box elements and their citations, to spot missing elements

CaptionsListAll – Lists all paragraphs with bold Figure, Table, Box

ColumnTotal – Do the numbers in this column agree with the total?

AlphabeticOrderChecker – Finds any suspicious non-alphabetism

AlphaOrderChecker – Creates an alpha-sorted version of selected text showing changes

AlphabeticOrderByLine – Finds any suspicious non-alphabetism

FindNextNumber – Jumps from one number to the next – section, fig, table etc

FindPreviousNumber – Jumps back to the previous number

NumberSequenceCheckerSimple – Checks consecutivity of simple numbering

NumberSequenceCheckerDecimal – Checks consecutivity of numbering containing a decimal point

NumberSequenceCheckerHierarchical – Checks the sequence of hierarchical section numbers

AddSectionNumber – Adds indexed section number

NumberParasAuto – Adds hierarchical section numbering

NumberParasTagged – Adds numbering to first-level headings tagged with <a>

TypeSectionNumber – Adds a section number to the current heading

FindNextBigText – Searches down for a bigger than Normal font (related to above macro)

NextNumber – Finds next section number

NextNumberPlus – Finds next section number (can’t remember what the difference is, sorry!)

NextNumberPlusUp – Finds previous section number

NextNumberUp – Finds previous section number

16. References

CitationLister – Creates a list of all citations in the text

CitationListTrimmer – Tidies up ‘funny’ items in a citation list

CitationListChecker – Tries to match citations with references, leaving un matched items highlighted

CitationListSortByYear – Sorts items in an in-line citation list in the text by date

SortListInText – Sorts in-line citations in a list in the text alphabetically

VancouverCitationChecker – Finds all citations and creates a list in citation order

VancouverAllCited – Creates a numerical list of all cited Vancouver reference numbers

ShortTitleLister – Creates a list of the named references in the notes

AuthorDateFormatter – Checks/corrects author/date formatting of reference list

AuthorInitialCapitalReferences – Changes author surnames in all capitals to initial capital

EtAlElision – Crops multi-authors in refs lists to a given number before ‘et al’
EtAlCitationElision – Crops multi-author citation in the text to single name + ‘et al’
HighlightMultiAuthorCitations – Finds and highlights all the multi-author citations in the text

AuthorNameSwap – Changes the order of author surname and initials/given name

SwapNames – Changes the order of author surname and initials/given name

AuthorForenamesInitialiser – Changes author forenames to initials

AuthorsNotAllCaps – Changes author surnames to initial cap only (e.g. SMITH, J. to Smith, J.)

AuthorCaseChange – Lowercases author surnames (e.g. SMITH, J. to Smith, J.) in references list

AuthorNameReinsert – Replaces the dash-and-comma for the author’s name (comma)
AuthorNameReinsert – Replaces the dash-and-comma for the author’s name (parenthesis)
YearMoveToEnd – Moves the year to end of the reference

InitialSwapper – Swaps initials and surname

ShortTitleLister – Creates a list of the named references in the notes

ReferenceNameFinder – Gets date from reference and adds after author citation

ReferenceDateShift – Moves date from end of reference to after author

MultiFileReferenceCollator – Collects all references (or foot/endnotes) from multiple files

ReferencesCollator – Finds all reference lists, and colours, collates and sorts them

MultifileTrackChangeReport – Creates a file of sentences containing TCs in multiple files

17. Speed editing

(Video: youtu.be/SfU0gT8VAk4)

I’m referring here not to the overall editing process, but that point of the job where you’re actually reading the text and making changes

MultiSwitch – Switches the word(s) at the cursor with the alternate from your own list

WordSwitch – Scripted single-word switching (less useful than MultiSwitch?)

SearchThenMultiSwitch – Finds one of your words, then calls MultiSwitch to change it

SearchThenChange – Finds one of the words from a list, then changes to its alternate
CharacterSwitch – Scripted character switching

ClipboardLoader – Puts text in clipboard from a menu

ClipStore – Copies the selected text into a clip list

ClipPaste – Collects and pastes an item from a clip list

ClipPaste_1 – Collects and pastes a numbered item from a clip list

TypeA – Types ‘a’ or ‘A’, (or ‘an’ or ‘An’) between two words

ArticleChanger – Types, deletes or switches articles ‘the’/’a’/’an’
TypeThat – Types ‘that’ between two words

ThatWhich – Changes ‘that’ to ‘which’ and vice versa

DeleteWord – Deletes current word, but no punctuation

NumberDecrement – Subtracts one from the following number (or decrease the letter by one, alphabetically)

NumberIncrement – Adds one to the following number (or increase the letter by one, alphabetically)

NumberToFigure – Converts the next number, looking through the text, to a figure

NumberToText – Converts next number into text

NumberToTextUK – Converts next number into text

NumberToTextUS – Converts next number into text

NumberToTextMultiSwitch – Finds a number, then calls MultiSwitch to change it

ZifferWort – Converts the next number (1 to 12) into German text
TextToNumber – Finds numbers expressed in words + converts to figures

CharToAcute – Adds an acute accent to the next vowel

CharToGrave – Adds a grave acute accent to the next vowel

CharToCircumflex – Adds a circumflex to the next vowel

CharToUmlaut – Adds various accents

CharToVariousAccents – Adds various accents

CharToMacron – Adds a macron accent to the next vowel

HighlightFindDown – Selects the next piece of highlighted text

HighlightFindUp – Selects the previous piece of highlighted text

SelectNextHighlight – Selects the next piece of highlighted text
SelectPreviousHighlight – Selects the previous piece of higlighted text
SwapCharacters – Switches characters either side of cursor

SwapPreviousCharacters – Switches the two characters in front of the caret

SwapWords – Swaps adjacent words, including formatting

SwapThreeWords – Swaps three adjacent words (chips and fish −> fish and chips)

CaseNextChar – Changes case of the next character

CaseNextWord – Changes case of initial letter of next word or selection

CaseSecondNextWord – Changes case of next-but-one word

TitleHeadingCapper – Uppercases initial letter of all major words in heading (so-called ‘title case’)

TitleUnCapper – Uppercases initial letter of heading only on very first word (so-called ‘sentence case’)

HeadingSentenceCase – Sentence-cases this selection or paragraph (but not acronyms)

TitleInQuotesCapper – Uppercases initial letter of all major words between quote marks (so-called ‘title case’)

TitleInQuotesCapperGlobal – Uppercases initial letter of all major words between quote marks (so-called ‘title case’)

TitleInSquaresCapperFR – Title-cases words of a title between square brackets (in French or English)

AddQuotesAndTitleCap – Puts quotes on sentence, then makes it title case

TitleRemoveQuotesAndCaps – Removes quotes from current sentence, then makes it lowercase

VerbChanger – Changes “(to) splodge” <−> “(of/for) splodging”

VerbChangerNL – Changes Dutch verbs in current sentence

VerbChangerNLglobal – Changes Dutch verbs through the whole file

SpellingSuggest – Checks/corrects spellings, and for FRedit list adds suggested change

Pluralise – Converts the word at the cursor to its plural form (-s, -oes, ches and -ies)

Hyphenate – Hyphenates two words

PunctuationToSingleQuote – Changes next quote mark to single

PunctuationToDoubleQuote – Changes next quote mark to double

CurlyQuotesToggle – Switches on auto curly quotes on and off

PunctuationToSingleQuoteDE – Changes next quote mark to German single

PunctuationToDoubleQuoteDE – Changes next quote mark to German double

PunctuationToSingleQuoteFR – Changes next quote mark to French single

PunctuationToDoubleQuoteFR – Changes next quote mark to French double

PunctuationToSinglePrime – Changes next quote mark to single prime

PunctuationToDoublePrime – Changes next quote mark to double prime

AddQuotesDouble – Adds double quotes to the current word or phrase

AddQuotesSingle – Adds single quotes to the current word or phrase

DoubleQuotesToSingle – Changes all occurrences of a specific phrase from double to single curly quotes

CommaAdd – Adds a comma after the current word

CommaPrevious – Adds a comma before the current word

CommaAddUSUK – Adds a comma (taking account of US/UK punctuation conventions)

PunctuationOffRight – Removes the punctuation off a word end (and quote off beginning)

PunctuationOffNearHere – Removes the punctuation near the cursor
PunctoffBothEnds – Removes punctuation from both ends of a word

ScareQuoteAdd – Add single quotes round a word

DoubleQuotesSingleTopical – Changes double quotes around current text to singles

QuoteCopier – Copies text from one quote pair to the next

MoveToNextQuote – Moves cursor to the next quote pair

TypeTimesX – Types ‘(×2)’ then moves back to the number, ready to increase it

DeleteSentenceAfterQuote – Deletes rest of sentence after current quote

FinalCharDelete – Removes the final character or punct off a word

JoinTwoWords – Joins two words

WordPairPunctuate – Makes word pair hyphenated or single word

PunctuationToDash – Changes next hyphen/em/en dash to an em/en dash

PunctuationToHyphen – Changes the word break punctuation to a hyphen

PunctuationToMinus – Finds punctuation and changes to minus sign

PunctuationToSpace – Changes the next punctuation item to a space

PunctuationToThinSpace – Changes the next punctuation item to a thin space

ExclamationMark – Makes adjacent words into sentence end

FullPoint – Makes adjacent words into sentence end

QuestionMark – Makes adjacent words into sentence end

Semicolon – Makes adjacent words into semicolon separated

Dash – Removes punctuation, add dash and lowercases next char

Colon – Makes adjacent words into colon separated

Comma – Makes adjacent words into comma separated

CommaInDialogue – Gives adjacent words a comma link

FullPointInDialogue – Makes adjacent words into sentence end

ProperToPronoun – Changes the next proper noun to a personal pronoun

AddParentheses – Puts parentheses round the current word or phrase

AddTextRoundText – Adds text at either end of a word or phrase (can delete punctuation)

ParenthesesEtcPairDelete – Removes the following pair of parentheses or quotes, etc.

AutoCurlyQuotesOFF – Switches off auto curly quotes

AutoCurlyQuotesON – Switches on auto curly quotes

FrenchQuotes – Switches UK quotes to French quotes

GermanQuotes – Switches UK quotes to German quotes

Ampersand – Changes ampersand (&) to ‘and’
ColonLowerCase – Changes the initial letter after a colon to lowercase

ColonUpperCase – Changes the initial letter after a colon to uppercase

ColonUnbold – Romanises bold colons that are followed by roman text

ItalicQuoteToggle – Toggles between italic and single quote

NonCurlyApostrophe – Adds non-curly single quote

NonCurlyQuote – Adds non-curly double quote

SelectWord – Selects current word

SelectWordSmart – Selects current word, and then those before it

SelectSentence – Selects current sentence

SelectParagraph – Selects current paragraph

TagSelectedOrItalic – Adds red tags to the selected text or italic text

TagSelectedOrBold – Adds red tags to the selected text or bold text

AllCapsToInitialCap – Initials-caps any words in all caps

DeleteRestOfSentence – Deletes from the end of the current word to the end of the sentence

DeleteRestOfLine – Deletes from the beginning of the current word to the end of the line

SearchTheseWords – Finds the next occurrence of any of a list of words

CompareTexts – Compares copied text (i.e. clipboard contents) with selected text

CompareTextsOLD – Selects non-identical texts (was called IdenticalTextCheck)

OxfordCommaSelectiveDelete – Moves to next Oxford comma and/or deletes current comma first

RulersShow – Switches Word’s ruler on and off

18. Speed navigating around the text

SmartFinder – Finds this text/note/page/date/heading/format etc, etc immediately

FindSamePlace – Finds the same place in another open file

FindInContext – Finds certain words within a given word range

FindInContextLoad – Loads name and date ready for FindInContext macro

FindFwd – Finds next match forwards, case insensitively

FindFwdCase – Moves forward to next match, case-sensitively

FindBack – Next find backwards

FindBackCase – Next case-sensitive find backwards

FindReplaceGo – Finds, replaces and moves to the next match

FindReplaceStay – Finds and replaces but doesn’t move to next

FindClip – Finds whatever is in the clipboard

FindClipTop – Jumps to the top, and finds whatever is in the clipboard

InstantFindDown – Finds selected text (or word at the cursor) downwards, optionally leaving a bookmark

InstantFindUp – Finds selected text (or word at the cursor) upwards, optionally leaving a bookmark

InstantFindDownWild – Finds selected text downwards with wildcards set on

InstantJumpDown – Finds selected text (or word at the cursor) downwards, but not changing the Find text

InstantJumpUp – Finds selected text (or word at the cursor) upwards, but not changing the Find text

InstantFindTop – Jumps to the top and then seeks the text that was at the cursor

InstantFindBottom – Jumps to the bottom and then seeks the text that was at the cursor

PrepareToReplaceDown – Copies text into the F&R box

PrepareToReplaceFromTop – Copies text into the F&R box from top

PrepareToReplaceWithMarker – Copies text into the F&R box from top leaving marker

FindInDeletedText – Searches only the deleted (track changed) text

JumpNextAppliedStyle – Jumps to the next applied style

ToCback – Jumps back to table of contents

CommentNext – Goes to next comment

CommentPrevious – Goes to previous comment

ChangeNext – Finds next edited item (but not a comment)

ChangePrevious – Finds previous edited item (but not a comment)

CommentJumpInOut – Jumps into and out of comment text
TableNext – Jumps to next table

TablePrevious – Jumps to previous table

BordersNext – Finds next paragraph with borders
BordersPrevious – Finds previous paragraph with borders
AbbrSwap – Swaps abbreviation into or out of brackets

BookmarkTempAdd – Adds temporary marker

BookmarkTempClear – Deletes temporary markers

BookmarkToCursorSelect – Selects from temporary marker to cursor

BookmarkTempFind – Jumps to temporary marker

FindNextBigText – Searches down for a bigger than Normal font

SearchTheseWords – Finds the next occurrence of any of a list of words

19. Spelling

UKUSCount – Has the author predominantly used UK or US spelling?

UKUShighlight – Marks US spellings within UK text and vice versa

IZISCount – For UK spelling, has the author predominantly used -is- or -iz- spellings?

(For editing, you can use IStoIZ and IZtoIS to implement your decision.)

SpellingErrorLister – Generates an alphabetic list of all the different spelling ‘errors’ (according to MS Word)

SpellingErrorHighlighter – Adds various highlights to words in the list that are (or could be) spelling errors

(For editing, SpellingSuggest, FReditCopy, FReditSame and FReditListProcess, SpellingListProcess can

 be useful.)
SpellingErrorListerBilingual – Generates an alphabetic list all the bilingual spelling ‘errors’
ProperNounAlyse – Alerts you to possible proper noun misspellings, showing their frequency

(For editing, ProperNounToFRedit can be useful.)
FullNameAlyse – Creates a frequency list of all full names, e.g. Joe Bloggs, K Smith, Paul Edward Beverley

SpecialWordSpellAlyse – Does a ProperNounAlyse of all long ‘spelling error’ words

HyphenAlyse – Shows the frequency of word pairs in hyphenated, two-word and single-word form

HyphenationToFRedit – Creates a FRedit list from a HyphenAlyse file

WordPairAlyse – Shows the frequency of word pairs that are never hyphenated (e.g. can not/cannot)

AccentAlyse – Compares words that use the same letters, but with different accents

AccentedWordCollector – Collects all the accented words in a text

AAnAlyse – Highlights a/an errors: a onion, an pear, an union, a hour, a HTML, an UFO, a O, an P, a H, an U

DocAlyse – Counts past participles (-t/-ed), among(st), C/chapter, et al., i.e. etc, focus(s), benefit(t), Fig(ure), Eq(n)

SpellcheckWordUK – Spellchecks single word UK

SpellcheckWordUS – Spellchecks single word US

DeleteAllSpellingErrors – Deletes all spelling errors from a file (why?!)

SpellingShowToggle – Switches visible spelling error indication on and off

20. Tagging and caption formatting

(Much done globally using FRedit, but…)

TagList – Adds tags to a current numbered or bulleted list

TagBulletLists – Adds tags to all bullet lists

TagA – Adds a tag <A> to the current paragraph

CodeBoldParas – Tags/codes every bold heading

TableSpaceBeforeHeading – Adds a blank line where a numbered heading follows a table

AutoTagger – Automatically tags/codes all styled headings

FigTabBoxTagger – Adds tags to the captions of all figures, tables and boxes

ListOfTaggedHeadings – Lists all tagged headings, <A>, , etc

TagSelectedOrItalic – Adds red tags to the selected text or italic text

TagSelectedOrBold – Adds red tags to the selected text or bold text

ItalicBoldTagger – Adds red tags to all italic and/or bold text

TagVariousAttributes – Adds red tags to all italic/bold/sub/superscript text

TagNI – Adds an <ni> tag after every heading

TagChecker – Checks the continuity of a paired tag, e.g. ,

TagHighlighter – Highlights all of the ranges a paired tag, e.g. ,

FullPointOnCaptions – Finds captions and ensures they have a full point

21. Textboxes

SetTextBoxStyle – Applies style to all textboxes

TextBoxFrameCut – Removes textboxes and frames

ComboBoxAccept – Finds combo boxes and replaces them with the currently selected text

22. Track changes

TrackChangeShowHide – Sets up track changes to taste

TrackChangeDisplaySelect – Cycles through track change display levels

AcceptFormatting – Accepts just the formatting track changes, leaving all other track changes

AcceptFormatting365 – Accepts just the formatting track changes, leaving all other track changes

AcceptSpecificTrackChange – Accepts all occurrences of one specific track change

TrackSimplifier – Accepts certain types of tracked features

MultiFileAcceptTrackChanges – Accepts all track changes in multiple files

MultifileTrackChangeReport – Creates a file of sentences containing TCs in multiple files

ShowHideAllTracking – Toggles showing both track changes and comments on and off

ShowHideTracksOnly – Toggles showing just track changes on and off

ConsolidateTracking – Turns an instance of split tracking into one single change

TrackChangeAccept – Accepts the track changes on the current line

TrackChangeReject – Rejects the track changes on the current line

TrackChangeCounter – Counts all the edits in a document

CopyAllEditedSentences – Copies all sentences that have tracked edits in them

TrackDateTimeList – Lists the date and time of all track changes

FandRdespiteTCsSelective – Does current F&R despite track changes (selective)

FandRdespiteTCsGlobal – Does current F&R despite track changes (global)

CompareNow – Creates an instant comparison of two open Word files

FindInDeletedText – Searches only the deleted (track changed) text

VisibleTrackOff – Visible reminder that track changes is off

VisibleTrackOff2 – Visible reminder that track changes is off – using different formatting

VisibleTrackOff3 – Visible track change reminder – using wiggly lines!

VisibleTrackOff4 – Visible track change reminder – using yellow background

TrackOnOffVisible – Switches tracking on/off with visible background

TrackOnOffVisibleMac – Switches tracking on/off with visible background (for Mac)

BackgroundColourOnOff – Switches background colour on/off

23. Odds and sods

WhatsAppTextFormat – Converts text from Word to WhatsApp formatting
ForumTextFormat – Converts text from Word to CIEP Forum and vice versa

DictaFRedit – Adds features to Word 365 Dictate, and cleans up it errors
CountDownVisible – Shows a statusbar and Big Text countdown to zero

OvertypeBeep – Sounds warning beep on overtype

OvertypeBeep2 – Sounds warning beep on overtype and gives visual clue

MaggyIt– Creates a Maggied version of the current file

CloneWordFile – Creates a clean copy of a corrupted file, including paragraph styles plus bold, italic etc.

CloneWithEquations – Creates a clean copy of a corrupted file, including formatted equations

TweetCheck – Highlights paragraphs longer than 140 characters

AutoCorrectItemsDeleteAdd – Optionally deletes all items, then adds new items

AutoCorrectItemsList – Lists all current autocorrect items

CountRemainder – Counts words below the cursor

CountRemainderSimple – Counts words below the cursor

AlphaHeadersOnIndex – Adds alpha headers to an index

MacroMenu – Offers a list of macros to launch

TitlesHide – Switches all full colour font to light grey font

TitlesShow – Switches all the light grey font colour text to full colour

TitlesShowHide – Toggles between light grey font colour text and full colour
TitlesReveal – Switches the next light grey font colour to full colour

FixedFontRed – Sets font to an ‘almost’ red font colour

FixedFontBlue – Sets font to an ‘almost’ blue font colour

FixedFontBlack – Sets font to an ‘almost’ black font colour

FixedFontSwitch – Switches font colour red > blue > black > red

FileOpener – Menu system to select and load a file(s)

